Факультет

Студентам

Посетителям

Режим вентиляции инкубаторов

Третьякова исследовала состав воздуха в инкубаторах и нашла, что аммиак появляется там только в момент наклева и выхода цыплят и, следовательно, в это время должна быть увеличена вентиляция.

Автор не обнаружила сероводорода в инкубаторах и считает причиной этого большую растворимость его в воде. Углекислота, по данным автора, не превышает в нормальных условиях 0.55%. Обычно же (при средней вентиляции) содержание СO2 равно 0.3—0.4%, и эта концентрация углекислоты безвредна. Автор провела опыт с поглощением углекислоты в инкубаторе, который не дал повышения выводимости, и, следовательно, делать это, по ее мнению, нет смысла.

В наших работах мы показали, что в последние дни инкубации газообмен значительно увеличивается. Это ставит вопрос о вентилировании инкубаторов в дни перед вылуплением (сложный период перехода к совершенно другим условиям жизни) на первое место в обеспечении необходимых условий для нормального развития эмбриона.

К сожалению, в последнем руководстве по инкубации недооценивается значение состава газов для нормального эмбрионального развития и смена воздуха в инкубаторе рассматривается только с точки зрения расхода воды для поддержания необходимой влажности.

В связи с тем, что содержание кислорода в обычных условиях относительно мало изменяется (от 20.7% до 19.5%, т. е. на 5—7% первоначальной величины), расчеты по обмену воздуха в инкубаторе делают применительно к поддержанию необходимой концентрации углекислоты. Прицкер и Третьяков дают следующий расчет обмениваемости воздуха в инкубаторе за час, чтобы концентрация углекислоты не превысила нормы (0.3%).

В наиболее распространенном в настоящее время в СССР инкубаторе «Рекорд» на 1 м3 приходится около 1.5 тыс. яиц, и поэтому здесь необходим многократный обмен воздуха.

К сожалению, в литературе по инкубации мы встречаемся чаще с другой величиной, характеризующей вентиляцию, со скоростью движения воздуха. Однако величина эта не отражает определенной обмениваемости воздуха в инкубаторах разных систем, так как последняя зависит также от ряда других условий (ширина и длина выводной вентиляционной трубы и т. д.).

Уилгус и Садлер измерили скорость движения воздуха в инкубаторе с искусственной вентиляцией на разных его уровнях и обнаружили очень большие различия в ней — от 9—15 до 75 м в 1 мин. в инкубационной части инкубатора и от 5—7 до 35—45 м в выводной его части. Авторы подчеркивают, что такие большие вариации не способствуют высокой выводимости. Кроме того, по наблюдениям авторов, имеет значение и направление потока вентиляции, причем наилучшие результаты дает вентиляция сквозь яйца, снизу вверх.

Коноплев придает вентиляции при инкубировании куриных яиц после 15-го дня большое значение. На большом материале им было показано, что при высокой температуре (39.8—39.2° между лотками) и средней влажности (55.4—52.0%) в группе с малой скоростью воздуха (0.5 м/сек.) было выведено 42.4% цыплят, а в группе с большой скоростью (1.95 м/сек.) — 96.8%; примерно при той же температуре, но высокой влажности (78—74%) в группе с малой скоростью воздуха — 72.5% цыплят, а в группе с большой скоростью — 98.9%. Однако из данных автора следует, что при низкой температуре (37—37.8° между лотками) скорость воздуха играет значительно меньшую роль. Увеличение скорости воздуха при этом дало в одном опыте повышение выводимости на 3%, а в другом — только на 0.3%. Автор приводит также интересное наблюдение, когда вследствие недостаточной обмениваемости воздуха в инкубаторе был обнаружен сероводород, что сильно снизило выводимость цыплят. В заключение автор рекомендует при температуре в инкубаторе 37.8—38.0° (а между лотками 38.0—38.5°) и влажности 68% и 54%, чередующейся по 2 дня, установить скорость движения воздуха в инкубаторе 1.5 м/сек, что приведет к скорости между лотками только 0.3—0.5 м/сек. Автор подчеркивает далее, что кроме указанной скорости движения воздуха должна быть обеспечена хорошая обмениваемость его в инкубаторе.

Бражникова подтвердила данные других исследователей о более полном использовании утиными эмбрионами жира желтка (к концу инкубации у утиного эмбриона остается и втягивается только 12.4% желтка, а у куриного — 50%) и в связи с этим — более интенсивном дыхании их в последние дни инкубации. Считая допустимой концентрацией СO2 в инкубаторе 0.5%, автор заключает, что в начале инкубации вентиляция утиных яиц может быть даже несколько меньшей, чем куриных, но с 22-го дня до конца вывода утят она должна быть увеличена почти вдвое по сравнению с вентиляцией, применяемой при инкубировании яиц кур.

Сорока исследовал значение вентиляции для развития утиных эмбрионов во вторую половину инкубации и пришел к выводу о необходимости установить в инкубаторе с искусственной вентиляцией скорость воздуха 1.0—1.2 м/сек. и разреженную закладку яиц в инкубационной колонке (через один свободный ярус). При этих условиях вывелось 83.3% утят. Однако еще большее увеличение скорости воздуха (1.8—2.0 м/сек.) дало дальнейшее повышение выводимости утят — 85.5%.

В детальном обследовании инкубатора «Универсал-45», проведенном Орловым, большое внимание уделено вентиляции. Автор установил, что: а) скорость воздуха в этом инкубаторе в 4 раза выше, чем в инкубаторе «Рекорд», и равна в среднем 77 м/сек. (от 13 до 176 м/сек.), а в выводном шкафу — от 30 до 52 м/сек., б) обмен воздуха в инкубаторных шкафах происходит 33—36 раз в час (в 3—4 раза больше обмениваемости воздуха в инкубаторе «Рекорд»), а в выводном шкафу — 17 раз в час; в) благодаря хорошему обмену воздуха в инкубаторе «Универсал-45» обеспечивается сравнительно низкое содержание углекислоты: 0.1 — 0.17% в инкубационных шкафах и 0.21—0.25% — в выводном; г) в результате при инкубировании многих тысяч яиц получена более высокая выводимость, чем в инкубаторе «Рекорд»: цыплят — на 2.0—3.5% и утят — на 3.4—11.4%. В инкубаторе «Универсал-45» в этом сезоне выводимость цыплят была равна 88.3—90.7%, утят — 67.6—86.5%. Увеличение вентиляции особенно благоприятно сказалось на выводимости утят.

Установив более слабое развитие кровеносной системы у гусиных эмбрионов по сравнению с куриными Бордзивиловская предполагает, что в процессе эволюции они находились в лучших условиях аэрации, и считает необходимым обратить особое внимание при инкубации гусиных яиц на достаточный воздухообмен в инкубаторах. Этот вывод подтверждает исследование Быховца, показавшего, что газообмен гусиных эмбрионов протекает значительно интенсивнее, чем у куриных, так как вес гусиного яйца только в 3 раза больше куриного, а выделение углекислоты одним яйцом в 4 раза больше. На основании своих наблюдений автор разработал нормативы вентиляции при инкубировании гусиных яиц в инкубаторе «Рекорд-39». Для нормального газообмена всех находящихся в инкубаторе гусиных эмбрионов необходим примерно 11-кратный обмен воздуха инкубатора в час. В связи с фактически имеющимся в инкубаторе при современной конструкции 8-кратным обменом воздуха автор считает необходимым повысить воздухообмен в нем на 25%.

Для выяснения роли каждого из факторов инкубации, в том числе вентиляции, при инкубировании яиц неодомашненных птиц (фазанов и перепелов) Романов провел многочисленные опыты на большом материале (около 9500 яиц). Автор отмечает, что яйца диких птиц особенно чувствительны к изменению вентиляции и для каждого вида есть свои специфические оптимальные условия. Так, для инкубирования фазаньих яиц в первые 16 дней наиболее благоприятна вентиляция со скоростью воздуха 20 м в 1 мин., а в последние 8 дней — естественная вентиляция (значительно более медленная скорость воздуха); перепелиные яйца можно инкубировать все время в инкубаторе с искусственной вентиляцией.

Несколько слов следует добавить о косвенном значении вентиляции. Хаскин показал, что вентиляция при промышленной инкубации играет серьезную роль в теплообмене яиц в конце инкубационного срока, создавая возможность отдачи излишков тепла. Автор подсчитал, что только 10% теплоотдачи в это время осуществляется испарением, а теплоотдача — излучением, которая у одиночного яйца составляет 43% всей теплоотдачи, для каждого яйца из партии в больших инкубаторах сокращается наполовину вследствие уменьшения свободной поверхности, соприкасающейся с воздухом инкубатора (при плотной укладке яиц в лотки в вертикальном положении), и следовательно, значительно увеличивается роль теплоотдачи конвекцией. Поэтому необходимо увеличить скорость движения воздуха в инкубаторе, особенно в пограничном с яйцами слое воздуха (обычно не превышающей здесь 0.09—0.1 м/сек.), во избежание перегрева яиц во второй половине инкубационного срока.

В заключение следует сказать, что вентиляция инкубаторов, способствующая хорошему газообмену эмбрионов, играет не меньшую роль в нормальном течении роста и развития эмбрионов, чем температура и влажность, особенно в последние дни инкубации, когда этот фактор становится едва ли не самым важным. Особенное внимание необходимо уделять вентиляции при инкубировании утиных и гусиных яиц, а также яиц промысловых птиц (фазаны, перепела и т. п.).