Факультет

Студентам

Посетителям

Обмен энергии в клетке

Один из наиболее сложных вопросов — образование, накопление и распределение энергии в клетке.

Как же клетка вырабатывает энергию? Ведь в ней нет ни атомного реактора, ни электростанции, ни парового котла, хотя бы самого маленького. Температура внутри клетки постоянна и очень невысока — не более 40°. И несмотря на это, клетки перерабатывают такое количество веществ и так быстро, что им позавидовал бы любой современный комбинат.

Как это происходит? Почему полученная энергия остается в клетке, а не выделяется в виде тепла? Как клетка запасает энергию? Прежде чем ответить на эти вопросы, нужно сказать, что энергия, поступающая в клетку, — это не механическая и не электрическая, а химическая энергия, заключенная в органических веществах. На этом этапе вступают в силу законы термодинамики. Если энергия заключена в химических соединениях, то выделяться она должна путем их сгорания, и для общего теплового баланса неважно, сгорят они сразу или постепенно. Клетка выбирает второй путь.

Для простоты уподобим клетку «электростанции». Специально для инженеров добавим, что «электростанция» клетки — тепловая. Теперь вызовем представителей энергетики на соревнование: кто больше получит энергии из топлива и экономичнее ее израсходует — клетка или любая, самая экономичная, тепловая электростанция?

В процессе эволюции клетка создавала и совершенствовала свою «электростанцию». Природа позаботилась обо всех ее частях. В клетке есть «топливо», «мотор-генератор», «регуляторы его мощности», «трансформаторные подстанции» и «линии высоковольтных передач». Посмотрим, как все это выглядит.

Основное «топливо», сжигаемое клеткой, — углеводы. Самые простые из них — глюкоза и фруктоза.

Из повседневной медицинской практики известно, что глюкоза — важнейшее питательное вещество. Сильно истощенным больным ее вводят внутривенно, непосредственно в кровь.

Более сложные сахара также используются как источники энергии. Например, обычный сахар, имеющий научное название «сахароза» и состоящий из 1 молекулы глюкозы и 1 молекулы фруктозы, может служить таким материалом. У животных топливом является гликоген — полимер, состоящий из связанных в цепочку молекул глюкозы. В растениях есть вещество, аналогичное гликогену, — это всем известный крахмал. И гликоген и крахмал — запасные вещества. Оба они откладываются на «черный день». Крахмал обычно содержится в подземных частях растения, например клубнях, как у картофеля. Много крахмала и в клетках мякоти листьев растений (под микроскопом зерна крахмала сверкают как мелкие кусочки льда).

Гликоген накапливается у животных в печени и оттуда расходуется по мере необходимости.

Все более сложные, чем глюкоза, сахара до расходования должны распадаться на свои исходные «кирпичики» — молекулы глюкозы. Существуют специальные ферменты, которые разрезают, как ножницы, длинные цепи крахмала и гликогена до отдельных мономеров — глюкозы и фруктозы.

При недостатке углеводов растения могут использовать в своей «топке» органические кислоты — лимонную, яблочную и др.

В прорастающих масличных семенах расходуется жир, который сначала расщепляется, а потом превращается в сахар. Это видно из того, что по мере расходования жира в семенах увеличивается содержание сахаров.

Итак, виды топлива перечислены. Но сжигать его сразу клетке невыгодно.

Сахара сжигаются в клетке химическим путем. Обычное горение — это соединение горючего с кислородом, окисление его. Но для окисления вещество не обязательно должно соединяться с кислородом — оно окисляется, когда от него отнимают электроны в виде водородных атомов. Такое окисление называется дегидрированием («гидрос» — водород). Сахара содержат много атомов водорода, и они отщепляются не все сразу, а по очереди. Окисление в клетке осуществляется набором специальных ферментов, ускоряющих и направляющих процессы окисления. Этот набор ферментов и строгая очередность их работы составляют основу клеточного генератора энергии.

Процесс окисления у живых организмов называется дыханием, поэтому далее мы будем пользоваться этим более понятным выражением. Внутриклеточное дыхание, названное так по аналогии с физиологическим процессом дыхания, связано с ним очень тесно. Подробнее о процессах дыхания мы расскажем дальше.

Продолжим сравнение клетки с электростанцией. Теперь нам необходимо найти в ней те части электростанции, без которых она будет работать вхолостую. Понятно, что полученную от сжигания углеводов и жиров энергию необходимо подавать потребителю. Значит, нужна клеточная, ««высоковольтная линия передачи». Для обычной электростанции это сравнительно просто — провода высокого напряжения протягивают над тайгой, степями, реками, и по ним энергия поступает к заводам и фабрикам.

Клетка тоже имеет свой, универсальный «провод высокого напряжения». Только в ней энергия передается химическим путем, и «проводами», естественно, служит химическое соединение. Чтобы понять принцип его действия, введем в работу электростанции маленькое осложнение. Предположим, что энергию от высоковольтной линии нельзя подать к потребителю по проводам. В таком случае, проще всего будет зарядить от высоковольтной линии электрические аккумуляторы, транспортировать их к потребителю, обратно транспортировать использованные аккумуляторы и т. д. В энергетике это, конечно, невыгодно. А клетке аналогичный способ очень выгоден.

В качестве аккумулятора в клетке используется соединение, универсальное почти для всех организмов — аденозинтрифосфорная кислота (о нем мы уже говорили).

В отличие от энергии других фосфоэфирных связей (2— 3 килокалории) энергия связи концевых (особенно крайнего) фосфатных остатков в АТФ очень велика (до 16 килокалорий); поэтому такая связь называется «макроэргической».

АТФ в организме обнаруживают всюду, где требуется энергия. Синтез различных соединений, работа мышц, движение жгутиков у простейших — везде энергию несет АТФ.

«Зарядка» АТФ в клетке происходит так. К месту выделения энергии подходит аденозиндифосфорная кислота — АДФ (АТФ без 1 атома фосфора). Когда энергия может быть связана, АДФ соединяется с находящимся в большом количестве в клетке фосфором и в эту связь «замуровывает» энергию. Вот теперь уже необходимо транспортное обеспечение. Оно состоит из специальных ферментов — фосфофераз («фера» — несу), которые по первому требованию «хватают» АТФ и переносят ее к месту действия. Далее подходит очередь последнего, завершающего «агрегата электростанции» — понижающих трансформаторов. Они должны понизить напряжение и дать уже безопасный ток потребителю. Эту роль выполняют те же фосфоферазы. Передача энергии с АТФ на другое вещество осуществляется в несколько стадий. Сначала АТФ соединяется с этим веществом, затем происходит внутренняя перестановка атомов фосфора и, наконец, комплекс распадается — отделяется АДФ, а богатый энергией фосфор остается «висеть»» на новом веществе. Новое вещество оказывается гораздо неустойчивее из-за избыточности энергии и способно к различным реакциям.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.



Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: