Факультет

Студентам

Посетителям

Как питаются растения

Растения грубо и лишь отчасти верно можно подразделить на питающихся независимо от окружающих их живых организмов (их пища — минеральные соли, воздух и вода), питающихся за счет разложения органических веществ погибших живых существ (растения-санитары) и паразитов, извлекающих пропитание из живых собратьев.

Одно из важнейших питательных веществ растений — углекислый газ. Им растения снабжают воздух и вода. Правда, частично растения усваивают углекислый газ из почвенных карбонатов, поглощая его своими корнями.

Количество принятого растением углекислого газа не зависит от давления воздуха и температуры, если они, конечно, не экстремальные по условиям опыта, и определяется прежде всего истинной потребностью растений. Эта потребность, однако, очень различна и зависит от специфичности протоплазмы, времени дня и освещения. Днем при хорошей освещенности потребность в углекислом газе наиболее велика. Углекислый газ, усвоенный растением, тотчас разлагается, восстанавливается светом и идет на образование углеводов; освобожденный же кислород удаляется из растения, выделяясь в окружающий воздух или окружающую воду. Переработка углекислого газа осуществляется хлорофиллом.

С раннего утра, едва первый солнечный луч упадет на растение, протопласты в своих миниатюрных мастерских начинают поденную работу, расщепляя углекислый газ и образуя из него органические соединения (углеводы, белки, жиры и др.). Это можно отобразить уравнением

6СО2 + 6Н2О → С6Н12О6 + 6O2 ΔrH = 2,82 кДж, где ΔrH — световая энергия, а кДж — килоджоуль.

Этот процесс называют фотосинтезом (греч. photos — свет и synthesis — соединение, составление). Кратко фотосинтез определяют как процесс углеродного питания зеленых растений, осуществляемый с помощью световой энергии.

Поглощаемый свет хлорофиллом растений не рассеивается в виде тепла, а преобразуется в химическую энергию накапливаемых в процессе фотосинтеза продуктов. Источником выделяющегося в процессе фотосинтеза кислорода является вода, а не углекислый газ, как первоначально полагали.

Открытие фотосинтеза (1771) принадлежит английскому священнику Дж. Пристли, который установил, что на свету зеленые растения улучшают воздух, «испорченный» дыханием животных. А вообще же идея фотосинтеза впервые осенила, вероятно, итальянского поэта Данте Алигьери (1265—1321):

Взгляни, как в соке, что из лоз сочится,
Жар солнца превращается в вино.
Чистилище, п. XXV

Водные растения получают углекислый газ из омывающей их воды, всегда содержащей его. Если это растения одноклеточные, то углекислый газ поглощается всей поверхностью клеточной оболочки, если многоклеточное — то поверхностным слоем, соприкасающимся с водой. Многоклеточные водоросли имеют полости, заполненные воздухом, — своего рода резервуары для дыхания и питания, которые, кстати, позволяют им жить стоя, а не униженно в горизонтальном положении.

Некоторые водоросли извлекают из воды не только необходимые им газы, но и питательные соли, а некоторые зеленой поверхностью извлекают газы, а питательные соли всасывают с помощью корней или корневидных образований из илистого дна водоема. Последние — своего рода аналог земноводных рептилий. Только неизвестно — готовятся ли они выйти на сушу или их поколения в конце эволюции изберут водную стихию. Последнее, судя по итогам деятельности человека, становится все менее вероятным. Чистота вод человеком нарушается с изумительно тупым постоянством и упорством. В Северное море, например, ежегодно сбрасывается больше 1,2 миллиона тонн нитратов, 34 тысячи тонн цинка, около 12 тысяч тонн свинца, 5 тысяч тонн меди, кадмия и ртути. Кроме того, 130 миллионов тонн мусора, 90 процентов которого содержит тяжелые металлы. Почти лишены кислорода воды Балтики. Промышленники, правда, тешат себя надеждой, что воды этих морей со временем можно будет использовать в качестве дизельного топлива. Действительно, при нагревании липидов водорослей со смесью соляной Кислоты и метилового спирта полимерные цепочки разрываются и образуются жирные кислоты, которые затем реагируют со спиртом, выделяя метиловый эфир — вполне удовлетворительное топливо для дизелей.

У земноводных растений листья в зависимости от того, находятся ли они под водой или над водой, меняют свой вид и форму. Так, водяной лютик, или шелковник (Batrachium foeniculaceum), если стебли его развивались под водой, имеет листья, разделенные на тонкие нитевидные доли, способные поглощать кислород и углекислый газ из воды. В случае высыхания берегов растение может жить на суше; тогда его междоузлия укорачиваются, листья мельчают, но доли листьев становятся шире.

Кроме водяных лютиков, аналогичные же метаморфозы претерпевают болотник обыкновенный (Callitriche verna) и рдесты (Potamogeton). То настоящими водными, а то вполне «сухопутными» могут быть жерушник земноводный, или хрен водяной, и стрелолист. У последнего, если оно в воде, ремневидные листья, если же над водой — стреловидные.

Растения высокогорных скал извлекают углекислый газ из смачивающей их росы и воздуха. Таковы мхи и лишайники. При полной сухости воздуха жизнедеятельность их замирает, растения словно затаиваются и от углекислого газа категорически отказываются.

Но едва их смочит дождь или роса, как клетки жадно впитывают воду, а сухие на вид пленки превращаются в пышные подушки. Вместе с дождем и росой растения начинают поглощать углекислый газ, хотя и в этих условиях умеренно, не жадно.

В отличие от водных растений, мхов и лишайников наземные растения извлекают углекислый газ почти исключительно из атмосферного воздуха. От испарения они защищены кутикулой — прозрачной пленкой, состоящей главным образом из кутина. Кутикула прерывается лишь над устьицами — парными клетками, оставляющими между собой открытую узкую щель. Каждое устьице — выход целой системы каналов, проникающих внутрь между тонкостенными клеточными камерами. Углекислый газ, попадая во внутренние ходы и каналы, проникает в клетки, содержащие хлорофилльные зерна, где подвергается «переработке». Кислород, если его не употребит растение, через каналы и устьица выделяется наружу. Устьица и каналы — «ноздри» растения; через них оно дышит и выделяет водяной пар.

Пожалуй, удивительно, что растения, если им не помогают бактерии, не способны усваивать азот из воздуха. Что-то здесь природа явно недоработала. Азот растение получает только через корни в виде растворенных в воде солей. Гниющие органические отходы выделяют аммиак, который служит источником азотной кислоты, а она, в свою очередь взаимодействуя с солями, получает возможность отдавать азот растениям.

Гниющую древесину используют в качестве питательного субстрата сотни различных видов мхов-сапрофитов, питающихся органическим веществом отмерших организмов.

Еще одним субстратом, питающим мохообразные, могут быть стволы и ветви живых деревьев и кустарников. Поселяющихся на них мохообразных называют эпифитами. Эпифиты, однако, не паразиты — они не живут за счет растения. Это всего лишь «квартиранты». Они используют гумус и влагу, накапливающиеся в трещинах коры деревьев. Впрочем, почти всю необходимую влагу эпифиты получают из атмосферы в виде дождевой воды, росы и тумана.

Обитающих на листьях вечнозеленых растений мохообразных называют эпифиллами. Только на юге Китая насчитывают более 70 видов эпифилльных печеночников (печеночных мхов). А есть еще бриофиты, селящиеся на раковинах пресноводных живых моллюсков североамериканских родов. Бриофиты используют моллюсков в качестве «рикш» — для передвижения.

К питательным элементам физиологи относят те элементы, которые необходимы растению и не могут быть заменены никакими другими, а к питательным веществам — доступные для растений соединения, в которых содержатся эти элементы.

Растения включают 50—98 процентов воды, а сухое вещество, остающееся после длительного высушивания при 105° С, наполовину состоит из углерода. При озолении сухого вещества органические соединения сгорают, а СО2, Н2О, NH3 и H2S — улетучиваются. Остающаяся минеральная часть (зола) составляет от 0,2 до 20 процентов сухого вещества. Поскольку состав золы отражает минеральный состав почвы, химический состав растения часто не отражает его потребности в питательных веществах. Лишь выращивание растений на питательных растворах позволяет это уяснить. Так, обнаружено, что десять элементов растению необходимы в больших количествах (макроэлементы), около шести — в очень малых (микроэлементы). К первым относятся С, H, O, N, S, P, K, Mg, Ca, Fe, ко вторым — B, Mn, Cu, Zn, Mo, Cl. Железо оказалось на грани между макро- и микроэлементами. В таком же «неопределенном» состоянии находится кобальт, нужный для многих организмов, особенно фиксирующих атмосферный азот.

Питательные элементы растениями усваиваются, за исключением кислорода, не в чистом виде:

  • C, H и O в виде CO2, H2O и O2;
  • N, S, P и B в виде анионов (нитрат, сульфат, фосфат, борат), а также в форме NH4+-катиона;
  • щелочные и щелочноземельные металлы — в виде катионов K+, Cа2+, Mg2+;
  • тяжелые металлы Fe, Mn, Cu, Mo и Zn — в виде катионов (исключение — молибдат МоО42);
  • Cl — в форме хлорид-аниона.

Из природных источников азота (NO3 и NH4+) растения предпочитают нитраты (NH4+) как «физиологически щелочные»: при образовании аммиака, необходимого для синтеза аминокислот, клеткой потребляются протоны (нитраты не усваиваются лишь проростками риса). Растение способно поглощать азот и в органической форме (аминокислоты, амиды, мочевина).

Важнейшую роль в питании растений, а следовательно, в питании человека играют нитраты и нитриты. Нитраты (соли азотной кислоты) — основной строительный материал растений. К сожалению, не редкость, когда огородники, торгующие овощами и фруктами на рынках, используют азотсодержащие удобрения как допинг для растений, перекармливая их сверх меры. Они не только не берут в расчет здоровье покупателей, но по невежеству не подозревают, что высокие дозы азотных удобрений, не сбалансированных с другими, губят огород и сад.

В растениях нитраты под действием ферментов, при участии молибдена и других микроэлементов превращаются в аминокислоты и белки. Какое-то количество свободных радикалов О3 постоянно присутствует в цитоплазме растений. Попадая с пищей в желудок человека, нитраты могут превращаться в нитриты. Нитриты в небольших дозах оказывают сосудорасширяющее, спазмолитическое воздействие, понижают кровяное давление. Но в желудке есть возможность превращения их и в нитрозоамины, а они канцерогенны. Кроме того, нитриты способствуют образованию в крови метгемоглобина, который в отличие от гемоглобина не способен насыщаться кислородом и передавать его клеткам и тканям тела.

Нитратов всегда больше в проводящих органах растений (стебель, кочерыга, черешки и жилки листьев), меньше в пластинках листьев и еще меньше в плодах и семенах. В недозрелых овощах содержание их всегда выше, чем в созревших. В пробах, взятых утром, содержание нитратов будет иным, чем в пробах вечерних. Большое влияние на содержание нитратов оказывают естественная и искусственная (неравномерное внесение удобрений) пестрота плодородия почвы и степень добросовестности и квалификации лаборантов.

Слабость санитарной службы, отсутствие хорошо оснащенных лабораторий, зачаточное состояние производства, сложность методов контроля, отсутствие экспресс-методов и недостаток знаний не позволяют пока обеспечить в СССР тотальный контроль за качеством сельскохозяйственной продукции. Еще хуже обстоит дело с контролем за содержанием в продуктах пестицидов и тяжелых металлов.

Многие хозяева уповают на навоз. Но и он, оказывается, ныне уже небезопасен. Не менее двух третей, сообщает журнал «Химия и жизнь», попадающего в атмосферу над Европейским континентом аммиака — продукт упомянутой субстанции. Аммиак же служит катализатором окисления SO2, содержащегося в выхлопных и дымовых газах, в SO3, из которого образуется серная кислота, выпадающая с кислотными дождями на вконец измученную человеком планету. В одной лишь Англии выброс аммиака с животноводческих ферм достигает 400 тысяч тонн в год.

Кстати, позволим себе небольшое отступление. Человеку далеко не безразличен состав микроэлементов потребляемых в пищу растений. Хотя бы потому, что отдельные микроэлементы имеются в составе ферментов, витаминов и гормонов. Так, цинк входит в состав многих ферментов и гормона инсулина. Он необходим и для поддержания нормальной концентрации витамина А в плазме. Дефицит цинка вызывает расстройства половой функции. Современному поколению людей, правда, эта опасность не грозит. Оно, можно сказать, переобогащено цинком, что связано с использованием цинковой посуды, цинковых красителей и наполнителей.

В эволюции живого на планете цинк играет выдающуюся роль, влияя на синтез нуклеиновых кислот. Как своеобразный биологический переключатель он участвует в хранении и передаче генетической информации.

Марганец в биологических системах встречается в состояниях Mn2+ и Mn3+. Он входит в состав ферментов, катализирующих окислительно-восстановительные реакции. Его соединения участвуют в синтезе аскорбиновой кислоты (витамина С). Известно влияние марганца на тканевые субстраты в процессе костеобразования.

Железо существует в организме человека в виде двух катионов Fe2+ и Fe3+. Оно входит в состав гемоглобина — его содержание в эритроцитах достигает 80 процентов. Недостаток железа в организме ведет к болезни крови — анемии (малокровию), проявляющейся в повышенной утомляемости, сердечной недостаточности, расстройстве пищеварения, ломкости ногтей и выпадении волос.

Медь (катионы Cu+ и Cu2+) входит в важнейшие комплексные соединения с белками (медь-протеиды). Последние подобно гемоглобину участвуют в переносе кислорода. Число атомов меди в них различно: два — в молекуле цереброкуперина, участвующего в хранении запаса кислорода в мозгу, и восемь — в молекуле церулоплазмина, способствующего переносу кислорода в плазме.

Медь активирует синтез гемоглобина, участвует в процессах клеточного дыхания, в синтезе белка, образовании костной ткани и пигмента кожных покровов. Ионы меди входят в состав медьсодержащих ферментов. От недостатка меди в молоке могут страдать дети грудного возраста. Это выражается в нарушении образования костей. А вот избыток меди ведет к развитию хронического гепатита — воспалительному изменению в тканях печени. Избыток меди откладывается в печени, мозге, почках, глазах и вызывает тяжелое заболевание — болезнь Вильсона — Коновалова.

Молибден в биологических системах обнаружен в виде Мо5+, Мо6+, реже — Мо3+ и Мо4+. Это самый тяжелый биометалл. Он влияет на рост, развитие и воспроизводство человека и животных. Входит в состав ряда ферментов.

В 20-е годы XX века выдающийся ученый В. И. Вернадский указал на зависимость жизнедеятельности организма от определенного содержания в нем микроэлементов. Но лишь спустя десятилетия это было принято во внимание. Начатые исследования позволили заметить свинцовые поражения нервной системы, ртутные заболевания кишечного тракта и почек, ванадиевые токсикозы, силикозы, фторные остеопорозы, бериллиозы и т. д. Оказалось, что изменение количества микроэлементов («перебор» или недостаточность) в организме человека может вызывать более 50 заболеваний. Однако вернемся к «диете» растений.

Важной для растения составной частью почвы является известь, которая нейтрализует гуминовые кислоты, способствует образованию мягкого гумуса — мелкокомковатой структуры с полостями для почвенных влаги и воздуха, необходимого для дыхания корней. Выделяя углекислый газ (СО2 + Н2О → Н+ + НСО3), корни повышают растворимость фосфатов и карбонатов и вместе с тем создают благоприятные условия для ризосферной флоры — бактерий и грибов, играющих большую роль в переработке почвенных минералов.

Существенными элементами белковых соединений растений считаются углерод, водород, кислород, азот и сера. При недостатке азота сокращается синтез белков, а следовательно, и ферментов, что проявляется в хлорозе (пожелтении) листьев. Указанные элементы поступают растворенными в воде в виде сернокислых, фосфорнокислых, азотнокислых, углекислых и хлористых солей кальция, магния, калия и железа.

Фосфор и бор встречаются в форме эфиров фосфорной и борной кислот преимущественно с гидроксильными группами различных органических веществ. Фосфор входит в нуклеиновые кислоты и сахарофосфаты; богатые энергией фосфорные соединения играют главную роль в энергетическом обмене.

В хлоропластах, самоснабжающихся энергией, на свету образуется богатая энергией фосфатная связь в молекуле аденозинтрифосфата (АТФ). Самозарядка происходит в процессе фотосинтетического фосфорилирования: соединения с двумя фосфатными связями (АДФ) присоединяют третью высокоэнергетическую химическую связь (Ф): АДФ + Ф = АТФ.

Любой процесс в любой клетке любого организма черпает энергию из молекул АТФ — из ее третьей фосфатной связи. Энергия выделяется, когда АТФ расщепляется на АДФ и Ф.

Заготовленная светом АТФ используется в растении для синтеза — накопления впрок жиров и углеводов — ведь молекулы АТФ копить про запас нельзя, иначе возникнет опасность высокого осмотического давления, своего рода гипертонии. А жиры и углеводы (крахмал) в раствор не переходят и не влияют на осмос.

Функция бора пока не совсем ясна. Известно, однако, что в процессах оплодотворения он играет какую-то важную роль.

Углерод, водород и кислород — универсальные компоненты органических веществ. Азот является важным структурным элементом органических соединений, например белков, нуклеиновых кислот и порфиринов (азотсодержащих пигментов), сера — белков, кофермента А, липоевой кислоты и других коферментов — составных молекул ферментов. Последние два элемента находятся в биомолекулах в восстановленном состоянии (—NH2, —SH), а потому нитраты и сульфаты, поступившие в растения, должны быть восстановлены, то есть должны присоединить электроны.

K, Mg и Ca содержатся в растениях преимущественно в виде свободных или адсорбированных ионов, а Mg и Ca также в хелатах — «клешневидных» соединениях (хлорофилл!). Они действуют как стабилизаторы структуры в рибосомах (Mg), хромосомах (Ca) и мембранах (Ca). Mg в виде хелата и K являются кофакторами (от лат. со — вместе) многочисленных ферментов. При недостатке Ca особенно сильно повреждаются меристемы, а при недостатке Mg, как правило, возникает хлороз.

Mo и Co участвуют в фиксации атмосферного азота, Мо — в восстановлении нитратов, Mn — в фотолизе воды. А вот с хлором не все понятно. В виде свободного Cl он играет, как подозревают некоторые ученые, какую-то роль в фотосинтетическом выделении кислорода.

Каждая клетка, если она не совсем опробковела, общается с внешней средой через плазмалемму (от греч. plazma — образование и lemma — скорлупа, кожица) — поверхностный слой протоплазмы на границе с клеточной оболочкой, выполняющей функцию барьера проницаемости.

В основе пассивного передвижения веществ лежит всем хорошо известная диффузия. А вот так называемый «активный транспорт» (транспортировка) требует затрат энергии главным образом в форме АТФ, что экономичней и безопасней по сравнению с атомной. Переносчиками служат «транспортные белки».

Как клетка поглощает воду биологи разобрались быстро. Поняли, что путем осмоса — диффузией через полупроницаемую мембрану, вполне «промокаемую» для воды, но непроницаемую или плохо проницаемую для растворенных в воде веществ.

Сложнее было понять, как вода и растворенные в ней питательные вещества перемещаются по растению в больших количествах, а главное, порой на непостижимую высоту. Оказалось, что для этого существуют специальные проводящие ткани: сосуды и трахеиды в древесине (ксилеме) для транспирационного тока и ситовидные трубки в лубе (флоэме) — для тока ассимилятов — первичных органических веществ, вырабатываемых в листьях при фотосинтезе.

Для транспирации движителем является выделение растением водяного пара в атмосферу (главный орган транспирации — лист). Транспирация листа обеспечивает в сосудах насосное действие транспирации, может поднимать столб воды, заполняющей сосуды, со скоростью до 100 метров в час.

Но давление воздуха в 1 атмосферу, как известно, держит столб воды высотой только 10 метров, а деревья иногда достигают и 100-метровой высоты. Поэтому пришлось растениям «схитрить» — использовать силу сцепления между молекулами воды, свободной от газов. Чтобы преодолеть эту силу сцепления, необходимо давление в 35 атмосфер. А 35 атмосфер достаточно, чтобы удержать столб воды (с учетом сопротивления фильтрации) высотой 140 метров! На самом же деле присасывающее действие деревьев может составить около 40 атмосфер.

Но вода с питательными веществами может подаваться вверх не только благодаря листу. Многим приходилось видеть «плачущие» пеньки в вырубленном лесу. У них листвы нет. Здесь иная причина — корневое давление, возникающее благодаря метаболическому транспорту ионов (оно уже нуждается в затрате энергии). Выдвигают и другие объяснения корневого давления. Пробуют, например, его объяснить передвижением заряженных молекул воды, вызываемым электрическим потенциалом.