Факультет

Студентам

Посетителям

Слизистая оболочка рубца и ее функции

Слизистая оболочка рубца представлена плоским многослойным эпителием, слегка ороговевшим и образующим ворсинки, которые увеличивают поверхность рубца примерно в 7 раз.

У крупного рогатого скота насчитывается около 520 тысяч ворсинок. Ворсинками покрыто около 80-85% всей поверхности слизистой. Встречаются ворсинки разной формы — лентовидные, листовидные, куполообразные, в виде язычков, бородавок и т. п. Размеры их колеблются в пределах от 2 (длина) х 1 мм (ширина) до 9×3 мм. В различных зонах рубца за счет образования ворсинок активная поверхность может увеличиваться в 14-21,6 раза. Нередко в рубце крупного рогатого скота встречаются ворсинки размером более 12 х 5 мм. Наибольшая плотность крупных ворсинок у всех изученных животных наблюдается в преддверии рубца. Описаны как видовые различия в строении рельефа слизистой оболочки рубца, так и не зависящие от видовой принадлежности принципиально сходные структуры, определяемые типом питания. Рельеф слизистой оболочки рубца у диких животных, питающихся грубым кормом, соответствует таковому у домашних жвачных. У животных, предпочитающих мягкую пищу (жираф, газели), во всех зонах рубца слизистая плотно и равномерно покрыта ворсинками. Самые крупные ворсинки, по-видимому, имеются в рубце жирафы (22 х 7 мм).

Многослойный эпителий толщиной 200-300 микрон насчитывает 15-20 рядов клеток, разделенных на 4 слоя — базальный, остистый, переходный, роговой. Базальный слой (Str. basale) состоит из одного ряда клеток, непосредственно контактирующего с базальной мембраной, разделяющей эпителий и собственную пластинку слизистой оболочки (Lamina propria). Клетки примыкают к базальной мембране либо своим уплощенным основанием, либо длинными цитоплазматическими отростками, которые отходят как от основания клетки, так и от боковых ее поверхностей. Клеточные ядра округлой или овальной формы располагаются в нижней трети клетки. В клетках много митохондрий. Остистый слой (Str. spinosum) состоит из 2-20 рядов клеток неправильной многоугольной формы, сильно вытянутые отростки которых могут достигать базальной мембраны. Шиповатая форма клеток объясняется наличием многочисленных коротких отростков, при помощи которых соседние клетки контактируют друг с другом. Ядра клеток имеют округлую форму, а митохондрий отмечается меньше, чем в клетках базального слоя. По мере приближения к переходному слою (Str. transitionale) клетки эпителия уплощаются и ориентируются параллельно поверхности слоя. Этот слой морфологически неоднороден и состоит из 2 3 рядов сильно уплощенных клеток со складчатыми мембранами. В клеточных ядрах наблюдается уплотнение ядерного материала и сморщивание. По периферии клеток накапливается плотный фибриллярный материал. Клетки содержат как более крупные гранулы, так и тонкие фибриллярные и ламеллярные структуры. Переход к роговому слою (Str. corneum) происходит внезапно, как своего рода «скачок в ороговении». При этом во многих ороговевших клетках сохраняются дериваты ядер, содержащие ДНК. Различают три типа клеток. Чешуевидные клетки особенно тесно скреплены между собой. В чешуевидных роговых клетках можно обнаружить максимум одну щелевидную полость. Эти клетки состоят из однородного или ячеистого рогового вещества. Веретеновидные клетки характеризуются наличием широкой периферической зоны кератина и расширенным внутриклеточным пространством с аморфным и гранулярным содержимым. Клеточные мембраны обоих типов клеток сильно складчаты. Отмечены также и грушевидные клетки, которые характеризуются наличием толстой ороговевшей стенки, в центре большого клеточного пространства располагается фибриллярный материал. При слущивании (десквамации) отделяются связанные между собой роговые чешуйки или отдельные роговые клетки. В местах соединения соседних клеток в эпителии рубца образуются десмосомы, пронизанные тонофибриллами. Клетки Str. basale связаны с базальной мембраной гемидесмососмами (полудесмосомами) В Str. spinosum и Str. transitionale образуется значительно больше десмосом, чем в Str. basale. Размеры межклеточных пространств уменьшаются по мере перехода от Str. basale к Str. transitionale. Уже в Str. basale и Str. spinosum обнаруживаются слияния наружных листков клеточной мембраны. Эти Macule occludentes располагаются « области десмосом двух соседствующих клеток. На границе между Str. transitionale и Str. corneum располагаются вытянутые в длину слияния мембран, которые в виде Zonulae occludentes замыкают межклеточные пространства. Межклеточные щели между чешуевидными роговыми клетками Str. corneum очень узки.

Детальный анализ ультраструктуры эпителиального слоя, выстилающего поверхность рубца, показывает, что стенке рубца и особенно слизистой принадлежат важные физиологические функции, в первую очередь, в поддержании постоянства рубцового содержимого. Благодаря системе замыкательных пластинок (Zonulae occludentes) внутреннее содержимое рубца надежно отгораживается от внутренней среды организма, прежде всего от собственной пластинки слизистой (Lamina propria mucoae). В ней локализована мощная капиллярная сеть слизистой оболочки рубца, разветвления которой проникают почти до самого эпителия.

Слизистая обладает двусторонней проницаемостью, благодаря чему обеспечивается пассивный транспорт воды и ионов в кровь и обратно по законам осмоса и активный перенос веществ путем фаго-, пино — и экзоцитоза. Особую роль играет базальный слой, осуществляющий активный транспорт метаболитов, в первую очередь летучих жирных кислот (ЛЖК) и аммиака. Благодаря возможности транспортировки метаболитов из крови в полость рубца организм хозяина может влиять на популяцию микроорганизмов.

Роговой слой эпителия рубца выполняет роль надежного бактериального фильтра. Бактерии обнаруживаются лишь в лопнувших грушевидных роговых клетках или широких межклеточных промежутках между этими клетками. Поверхностные слои определяют прохождение воды и растворимых метаболитов через эпителий. Если на поверхность слизистой со стороны полости рубца воздействует гидростатическое давление порядка 20-40 см вод. ст., то прохождение воды в сторону серозной оболочки усиливается. Давление со стороны серозной оболочки вызывает постепенное и сильное увеличение потока воды в сторону полости. В этих условиях наблюдается расширение межклеточных пространств и повреждение эпителия, выражающееся в образовании вакуолей. Такое состояние может способствовать поступлению воды в рубец и разжижению его содержимого при ацидозе.

Барьерные функции поверхностных слоев связаны главным образом с областью Zonulae occludentes. Именно здесь прохождение веществ затруднено, если не становится совсем невозможным. Не исключено, что эта область выполняет функцию избирательного абсорбционного фильтра, проницаемого для высокомолекулярных веществ с величиной частиц 75 А. Сильноразветвленная подсистема канальцев Zonulae occludentes, образованных щелевидными межклеточными промежутками, создает благоприятные условия для транспорта веществ между клетками. Внутриклеточному транспорту способствуют многочисленные контакты между соседствующими и даже сильно удаленными друг от друга клетками. Предполагается, что в глубоких слоях эпителия рубца существует еще один функциональный барьер, лимитирующий поток воды через стенку рубца.

Поглощение, накопление и внутриклеточное переваривание высокомолекулярных веществ, а также транспорт их через поверхностные слои слизистой оболочки рубца осуществляются системой фагосом и гетеролизосом, осуществляющих контролируемый транспорт через эпителий рубца. Даже роговые клетки сохраняют способность к образованию мембранных везикул, в связи с чем клетки могут выполнять такие важные функции как фаго — и экзоцитоз. Мембранные везикулы могут продвигаться внутри клеток, минуя ячейки кератинового скелета роговых клеток. Диффузно распределенные в Str. corneum гидролазы (эстеразы, кислая фосфатаза) начинают переваривание веществ, оказавшихся в результате фагоцитоза в гетеролизосомах.

Процессы диффузии через эпителий рубца в значительной степени определяются более высокой проницаемостью для липофильных метаболитов, чем для гидрофильных. Это объясняется тем, что липиды легче проходят через липидные участки мембран, тогда как гидрофильные вещества должны диффундировать через заполненные водой поры. Таким образом, диффузия зависит не только от химических или электрохимических градиента, но и от физико-химических свойств самого диффундирующего метаболита. Качественные различия в проницаемости цитоплазматических мембран в условиях неодинакового распределения этих параметров в клетке оставляет предпосылку активного направленного транс аорта, что особенно важно в тех случаях, когда не участвуют специфические переносчики.

Это положение получило следующее экспериментальное подтверждение. Торможение транспорта Na+ уабаином (специфическим ингибитором Na+-, К+-АТФазы) отмечается только в том случае, если ингибитор воздействует с серозной стороны слизистой оболочки. По отношению к крови содержимое рубца электроотрицательно, и этот электрохимический потенциал объясняется транспортом Na+. Трансэпителиальная разность потенциалов увеличивается с ростом концентрации Na и исчезает при подавлении транспорта уабаином или при кислородном голодании. В опытах in vitro в рубце овец зарегистрирован максимальный потенциал 15 мВ, а у телят — 36 мВ; in vivo разность потенциалов у овец составляет около 30 мВ. Таким образом, более половины Na из корма и слюны (у овец 1200 мэкв) активно транспортируется через эпителий рубца.

Наряду с механизмом ионного насоса для сильных электролитов в рубцовом эпителии обнаружен и неспецифически действующий насос для активного транспорта слабых электролитов. Движущей силой такого насоса является постоянство электрохимической разности потенциалов водородных ионов между тканью и окружающими внутренними жидкостными средами (кровь, лимфа). При этом в клетки эпителия могут входить и диссоциированные, и недиссоциированные молекулы, а в кровь поступают только недиссоциированные соединения.

Метаболизм рубцового эпителия оказывает влияние и на пассивный транспорт, осуществляемый путем диффузии. Это происходит, во-первых, при транспорте диссоциированных веществ под действием рубцового потенциала, который стимулирует диффузию из рубца в кровь анионов и тормозит этот процесс для катионов. В соответствии с электрохимической разностью потенциалов диффузия одновалентных катионов становится возможной при 3-кратном, а двухвалентных катионов 9-кратном превышении концентрации этого иона в крови. Во-вторых, на химический градиент влияет использование диффундирующих метаболитов в обмене веществ эпителия рубца. Градиент потенциала утрачивает непрерывность и становится ступенчатым. В этих случаях поглощение метаболитов тканями ускоряется, а дальнейший транспорт в пределах ткани замедляется. Эти выводы основаны на исследованиях транспорта летучих жирных кислот. В опытах in vitro скорость поглощения слизистой оболочкой в сторону полости рубца оказалась прямо пропорциональной, а скорость транспорта в сторону серозной оболочки обратно пропорциональной скорости превращений уксусной, пропионовой и масляной кислот. При подавлении обмена веществ в условиях аноксии различия в направлении диффузионных процессов исчезают.

Количественная сторона обмена веществ в рубце тесно связана с абсолютной величиной площади внутренней поверхности. При этом на свободных от ворсинок поверхностях поглощение веществ на 1/3 ниже, чем на тех участках, где плотно располагаются ворсинки. Уменьшение скорости всасывания метаболитов в рубце при склеивании ворсинок можно объяснить уменьшением площади активной поверхности всасывания.