Факультет

Студентам

Посетителям

Организации профиля почвы

Представление о почве будет неполным, если не рассмотреть иерархию ее форм от атомов до агрегатов — почвенных комочков.

Почву как организацию уровней начали изучать Б. Г. Розанов и А. Д. Воронин с 1970 г. Если почвы существуют в определенных организационных формах, то нужно искать их вещественный носитель, обладающий атрибутами материи: пространством, временем, движением. Учение о почвенных уровнях ставит задачи — понять принципы, по которым пространство построено в иерархическую систему; объяснить, каким способом в природе расположены по ступеням элементы почв и как они взаимодействуют между собой, образуя регулярные структуры; где «записан» план развития почвы и какие процессы его реализуют. Девиз такого метода исследования: «разделить для того, чтобы затем объединить».

Мы уже знаем, что профиль почвы состоит из горизонтов А, В и С. Каждый из них слагается из отдельностей, отдельности из агрегатов, агрегаты из микроагрегатов и так далее вплоть до атомов. Изменение размеров — явление закономерное, оно сопровождается скачкообразным преобразованием свойств почвенных элементов через каждый «шаг», или «квант организации». Если такой шаг установлен, то систему можно назвать иерархизованной. Известно, что природные объекты квантованы в геометрической прогрессии: 0,6; 1,3; 1,6; 2,6; 3,4; 4,5; … 10; 15. Одна из трудных задач — найти естественный, созданный самой природой шаг в мире почв. Он еще не обнаружен, и потому условно примем, что квант равен (в ангстремах): 1, 10, 100, 1000…, т. е. один уровень отличается от другого на порядок.

Такое деление только на первый взгляд кажется «безобидным». За ним скрыты философско-методологические проблемы, так как в ряду: профиль—горизонты—отдельности—агрегаты… атомы объединены в единое целое два различных мира: микроскопический и макроскопический. Это делает почвоведов участниками общенаучного спора о взаимоотношении микро — и макрообъектов. Из двух спорящих сторон одни считают, что явления микромира нельзя переносить в макромир; другие, ссылаясь на то, что природа едина, полагают, что процессы, происходящие в этих мирах, могут быть описаны едиными законами. Так, закон дуализма Луи де-Бройля запрещает выводы квантовой механики распространять на микрообъекты, т. е. объединять одним принципом процессы, происходящие на атомарном и агрегатном уровнях. М. М. Марков (1976) не согласен с этим. Он уверен, что проблемы макро — и микрофизики «могут быть завязаны в один тугой узел».

Изучение иерархии почвенных структур обнажает еще одну важную проблему, объясняющую специфику взаимопереходов: «элемент — система» или «система — подсистема». Раньше думали, что каждая предшествующая система есть простая сумма предыдущих подсистем (элементов), дающая правильные формы. Однако обнаружилась дислокация — нарушение порядка при переходе от одного уровня к другому, от подсистемы (элемента) к системе. Что же такое дислокация—хаос, беззаконие?

Дислокация является отсутствием закона только для данного уровня иерархической системы и его существованием для подсистемы. Если подсистему рассматривать как среду, симметрия которой не совпадает с симметрией почвенного тела, то в таком случае можно считать, что среда определит его дислокацию. Следовательно, система обязательно должна быть связана с подсистемой. Именно это и утверждается в знаменитой теореме К. Геделя, который доказал, что для каждой системы имеется подсистема, причем система не может быть описана только своими внутренними параметрами; хотя бы один из них заимствуется из подсистемы.

Отсюда следует, что почвенную иерархическую систему нельзя полностью формализовать; она должна включать какие-то аксиомы, принадлежащие подсистеме. Как «город» невозможно представить без «улицы», «улицу» без «дома», «дом» без «стен» и т. д., так и понятие «профиль» нельзя описать без понятия «горизонт», «горизонт» без «отдельности», «отдельность» без «агрегата». Каждое изменение размеров есть не простое преобразование геометрической фигуры, а скачок в иное состояние: например, из агрегатов формируется новое тело — отдельность, из отдельности еще одно новое тело — горизонт, из горизонтов — профиль почвы.

Следовательно, каждый уровень — это не механическое скопление элементов, а концентрированный синтез, не только включающий в себя сумму свойств, но и исключающий все лишнее, случайное при масштабном переходе от одного уровня к другому. Вероятно, такой переход от атомов к геологическим объектам имел в виду В. И. Вернадский (1975), когда писал: «В веществе планеты, в атомных его свойствах… мы должны искать причину многих геологических явлений». Другой пример: М. В. Волькенштейн (1965, с. 203) отмечает, что в идеале, решив задачу организации вещества, можно «предсказать микроскопическое строение мышцы, зная химическое строение ее белков»,

Ю. А. Урманцев (1978, с. 190) по форме изомерных молекул альдогексозы воссоздал структуру соответствующего ей изомера листа липы. Он решил и обратную задачу: исходя из изомера контура листа липы, нарисовал структуру изомера альдогексозы. Воистину справедливы поэтические строки Валерия Брюсова: «Есть тонкие, властительные связи меж контуром и запахом цветка»!

Реализация закона структурных уровней в почвоведении может позволить, например, по форме одних изомеров-агрегатов определить состав соответствующих им других изомеров — органо-минеральных молекулярных соединений, а также решить обратную задачу. Пока это мечта, но ее осуществление позволит перейти к более глубокому пониманию почвенной иерархии. Ниже приводятся описания разных уровней организации почв.

Уровень I атомарный. Размеры элементов около 1 А. Их свойства зависят от атомной структуры. Энергетическое состояние элементарных зарядов связано с валентностью: ее повышение увеличивает заряды. Поэтому, например, преобладание в почвах водоразделов трех-четырехвалентных ионов, а в почвах понижений одно-двухвалентных обусловливает возникновение и распределение электрогенеза и электромагнитных полей.

Уровень II, молекулярный. Размеры элементов 1— 10А, они образуют симметричные структуры.

Если предположить, что информация о конфигурации агрегатов закодирована в структуре электронных оболочек молекул, то знание их архитектуры позволит предвидеть, будут ли эти агрегаты иметь ореховатую, призматическую или пластинчатую формы? Разнообразие форм почвенных агрегатов есть результат состояния равновесия, рассматриваемого как стремление электронов сочетаться в наиболее устойчивых и минимальных в энергетическом отношении положениях. Автоматизм запоминания структур на этом уровне, видимо, связан со свойством почв и наносов создавать магнитное поле; каждый новый этап наносо — и почвообразования характеризуется своей остаточной намагниченностью.

Различная ориентировка окислов железа в шлифах, взятых из разновозрастных почв, доказывает, что биогеохимические процессы на данном и более высоком уровнях организации коррелируют с магнитными полями, которые периодически через века и тысячелетия меняют направленность. При этом в связи с полярной инверсией магнитного поля меняется видовой состав почвенной микрофауны и микрофлоры, увеличивается или уменьшается скорость размножения, переориентируется структура тончайших органо-минеральных частиц. Кроме того, в разных точках Земли намагниченность почв разная, особенно она высока на Дальнем Востоке. Это влияет на парамагнитный резонанс электронов (работы Е. А. Завойского, С. А. Алиева).

Уровень III, элементарные специфические ячейки размером 10—100 А с тождественными формами и параметрами блоков: диаметр 10—20 А, высота 10— 30 А, расстояние между слоями по вертикали 2,3— 3,6 А, число слоев, расположенных параллельно, 4—6; угол кручения создает спиральную пространственную правизну-левизну. Преобладают ячейки: а — молекулы ДНК, б — глинного минерала (галлуазита), в, г — гуминовой кислоты.

Макромолекулы этого уровня «подражают» по форме одна другой, как бы стараясь одинаково отразиться в зеркале. Отражение в неживой природе подобно примитивной памяти; это процесс адекватного соответствия форм, их взаимного запечатления, передачи основных структурных качеств молекул. При образовании устойчивых почвенных молекул из неустойчивых необходимо, чтобы последние имели упорядоченность, обусловленную какими-то предпочтительными стереохимическими отношениями. В противном случае, если бы молекулы образовывали неустойчивые, хаотичные структуры, их физические свойства были бы непредсказуемыми, а их функции (например, плодородие) невыполнимыми.

Предполагают, что взаимодействие органических и минеральных молекул в современных естественных условиях приводит к созданию специфического для почв органо-глинного минерала (Ковда, Трубин, 1977). Местоположение его составных частей в иерархии почвенных тел рассчитано теоретически (Ковалева и др., 1984). При этом возникает предположение о возможной информационной роли молекулы ДНК в структурообразовании. Этот биополимер в относительно больших количествах в свободном состоянии находится в почвах и коррелирует с содержанием гумуса (работы И. В. Асеевой, Н. С. Паникова, О. Т. Самко, Д. Г. Звягинцева). Видимо, молекулы ДНК почвенных растительных и микроскопических живых организмов контролируют, правда, в очень коротком жизненном цикле, при отмирании клеток, наследственные признаки. Вероятно, в почвах молекулы ДНК и РНК способны «размножаться», синтезируя полимеры с помощью минеральных матриц как источников информации кода. Сочетание минералогического кода с кодом нуклеиновых кислот, по-видимому, может дать матричный синтез органо-глинных минералов — первичных почвенных тел. Эта идея требует строгой проверки.

Уровень IV, ядра конденсации коллоидных частиц размером 100—1000 А. По данным академика Е. Н. Мишустина (1975), любому типу почв соответствует своя микробная ассоциация, каждая с доминантными формами микроорганизмов. Геометрическое соответствие форм микроорганизмов типам почв еще не выявлено, но многое видно из микрофотографий. Вирусы и микроорганизмы выполняют огромную разрушительную и созидательную роль при почвообразовании. Но и сами по себе они, как физические тела, служат центрами агрегации, или затравками, определяя конфигурацию почвенных тел следующего уровня.

Микроорганизмы могут иметь формы: 1) спиральные, или палочковидные; 2) изометрические, или сферические; 3) симметричных многогранников, или иксаэдрические. Так, в черноземах преобладают изометрические микробы, образующие микроагрегаты почв сферической формы — наиболее «выгодные» энергетически природные структуры. В каштановых и подзолистых почвах развиты спиральные микробы, образующие призматические агрегаты.

Уровень V, первичные коллоиды размером до 10000 А. Образуют агрегаты иловатой фракции (менее 0,001 мм) почв; их структура определяется симметрией микробных пейзажей. Каждый из

этих микробных узоров, как видно на фотографиях, имеет определенную симметрию: а — плоской кристаллографической решетки (гексагональную, косоугольную), б — спиральную, в — радиальную, г — бордюрную.

Уровень VI, ультрамикроагрегатный. Твердые органо-минеральные частицы размером около 100000 А, образующие агрегаты фракции «физическая глина». Они изучаются по микроскопическим срезам почв — шлифам. Здесь организующая роль принадлежит плазме — подвижной части почв; в ней упорядоченно рассеяны минеральные зерна — скелет. Плазма, видимо, создает пленки-мембраны, через которые осуществляется избирательная миграция ионов, способствующая возникновению разности потенциалов.

Уровень VII, микроагрегатный. Твердые органоминеральные частицы размером 0,1—1 мм, возникшие в результате агрегации более мелких частичек. Почвообразование — это прежде всего агрегация, что и запечатлено на фотографиях шлифов.

Уровень VIII, макроагрегатный. Естественные почвенные комочки (агрегаты) размером до 1 см, представленные в идеализированной форме. Каждому типу почв соответствует своя, присущая только ему геометрическая форма агрегатов: чернозему — додекаэдр, солонцу — призма, подзолу и такыру — моноэдр.

Агрегаты — основной строительный материал почвенных отдельностей и горизонтов. Их внутренняя морфология изучается с учетом центра — затравки, а также текстурной неоднородности в виде пирамид и зон роста. Так, следуя И. И. Шафрановскому, в почвенных агрегатах можно выделить 9 вершинных и 27 плоских реберных форм. Завершив описание всех восьми уровней, сделаем следующие предположения, касающиеся автоматизма процесса самоорганизации. Почвообразование требует значительных энергетических ресурсов. Последние создаются в результате фотосинтеза зелеными растениями, использующими энергию Солнца, и микроорганизмами, потребляющими

рассеянную энергию. При этом формируются новые энергетически емкие почвенные электромагнитные структуры в виде агрегатов разных уровней. Преобразуемая и в значительной части рассеиваемая свободная энергия в результате почвообразования частично концентрируется в разноуровенных структурах, замыкая тем самым биологический круговорот вещества. Превращения элементов различных почвенных уровней высвобождают дополнительные внутренние запасы свободной энергии, столь необходимые для агрегирования.

В борьбе за энергию из конкурирующих живых организмов или матричных молекул побеждают те, у которых скорость приращения массы в биохимических реакциях выше (Шноль, 1979). Это и позволяет сравнивать почвенные реакции по кинетическому или биологическому совершенству. По признаку наибольшей скорости реакции молекул со средой на первом месте, видимо, стоят черноземы, а на последнем — пустынные такырные и тундровые почвы. Внешнее и физико-химическое сходство любых почвенных типов различных точек Земли обусловлено тем, что из специфических органо-глинных соединений почв в конкуренции за вещество и энергию побеждают те «молекулы-мутанты», у которых выше коллективная скорость заполнения пространства. У почв с близкими скоростями биологических и физико-химических реакций, возможно, тождественны электродвижущие силы и конфигурации электромагнитных полей.

Естественная иерархия почвенных тел — это отражение способности разных уровней проводить через себя непрерывные информационные сигналы — потоки электронов — и тем самым осуществлять роль электрических проводников. По В. С. Авязнову и др. (1971), многоуровенность почв и горных пород можно понять лишь тогда, когда при построении иерархической модели будут учтены электрические законы. Разность потенциалов порождается любым изменением состояния атомов или ионов в почве: ее нагреванием, охлаждением, сжатием, растяжением, дроблением, смачиванием, иссушением; четко она возникает на поверхности контакта двух тел, особенно на границе раздела: лед — вода или лед — почва.

Лед может заряжаться положительно или отрицательно, что зависит от свойств контактирующей с ним почвы. Способствуя перераспределению вещества, лед при фазовых переходах (лед — талая вода) в течение суток, сезонов, лет и веков периодически изменяет электрическое поле, количество и качество химического состава почв, создавая в них «мерцающий» эффект различной продолжительности. Так как лед и мерзлота раньше занимали обширные пространства Земли, то следы их упорядоченной деятельности заметны повсюду.

А. Ф. Вадюнина, А. И. Поздняков (1977), Л. П. Пивоваров и др. (1979) видят причины появления стационарного электрического поля естественной природы в почве в неоднородностях любого порядка: физического, химического, биологического. Вероятно, электрический ток возникает на мембранах, которые, облекая твердые органо-минеральные части почв, формируют непрерывность и могут быть солевыми, в виде органических пленок и глинистой плазмы. По обе стороны мембран создается разность концентраций протонов, в результате чего образуется электрическое поле.

Электромагнитные поля действуют в ограниченных диапазонах тепла и влаги, строя внешне одинаковые свойства почв, что является источником почвенных аналогий. Несмотря на большое разнообразие внешней среды, почвы разных точек Земли имеют большое сходство. Оно вызвано самопроизвольным отбором немногих почвенных элементов из большого их разнообразия электромагнитными волнами определенной для каждой среды частоты. Влияние электронов проявляется во всем: это электролитическое осаждение таких элементов, как медь и железо, образующих красноватые пленки на агрегатах, или как кальций и магний, создающих белые налеты. Окрашивание профиля почвы гумусом — ровное, плавное, без отдельных пятен и линз — возможно только при электрофорезе, особенно во влажных почвах, где увеличивается количество подвижных электрически заряженных частиц.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.



Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: