Факультет

Студентам

Посетителям

Митоз клетки

Митоз — непрямое деление клетки, которое состоит из деления ядра (кариотомия) и цитоплазмы (цитотомия).

Митоз подразделяют на профазу (раннюю и позднюю стадии), прометафазу, метафазу, анафазу и телофазу. Само деление занимает относительно короткий промежуток времени — около 30 мин.

Митоз, или непрямое деление клетки, — это способ деления эукариотической клетки, при котором каждая из двух вновь образующихся клеток получает генетический материал, идентичный исходной клетке, то есть приводит к образованию двух полноценных клеток с диплоидным набором хромосом и равномерно распределенным цитоплазматическим материалом.

Профаза. Первой стадией митоза является профаза. В раннюю профазу начинается конденсация хромосом (стадия плотного и рыхлого клубка), ядрышко подвергается распаду, поляризуются центриоли.

В начале профазы пары центриолей перемещаются к разным полюсам клетки. Одновременно с этим образуются тонкие нити, радиально расходящиеся от каждой пары центриолей, — микротрубочки. Микротрубочки, формирующиеся из одного клеточного центра, тянутся навстречу микротрубочкам, полимеризующимся в другом клеточном центре. В результате они переплетаются. Ядерная оболочка распадается на пузырьки (кариолизис), и содержимое ядра сливается с содержимым матрикса цитоплазмы. На мембранах пузырьков, образовавшихся в результате распада кариолеммы, сохраняются рецепторные комплексы и ламины.

В позднюю стадию профазы продолжается конденсация хромосом. Они утолщаются и хорошо видны при световой микроскопии. Каждая хромосома состоит из двух сестринских хроматид, соединенных центромерой. В эту стадию начинает образовываться митотическое веретено — биполярная структура, состоящая из микротрубочек. Его организуют центриоли, входящие в состав клеточного центра, от которого радиально отходят микротрубочки.

Сначала центриоли располагаются вблизи ядерной мембраны, а затем расходятся, образуя биполярное митотическое веретено. В этом процессе участвуют полюсные микротрубочки, взаимодействующие между собой по мере удлинения. Ядро и ядрышко перестают существовать в виде обособленных единиц. Клетка становится более удлиненной. В профазу хромосомы впервые видны как двойные нитевидные структуры. В дальнейшем они приобретают палочковидную форму.

В профазу митоза ЭПС и комплекс Гольджи распадаются на везикулы. Такое временное разрушение органелл играет существенную роль в равномерном распределении цитоплазматического материала.

Прометафаза. Это продолжение поздней профазы. Во время прометафазы образуются кинетохоры (центромеры), функционирующие как центры организации кинетохорных микротрубочек. Отхождение кинетохор от каждой хромосомы в обе стороны и их взаимодействие с полюсными микротрубочками митотического веретена — причина перемещения хромосом.

Метафаза. В эту фазу хромосомы распределяются в области экватора и формируют метафазную пластинку. Если метафазная пластинка попадает в касательном срезе, то она видна как материнская звезда. Степень конденсации хромосом достигает максимального уровня. Каждую хромосому удерживают пара кинетохоров и связанные с ней кинетохорные микротрубочки, направленные к противоположным полюсам митотического веретена.

Хромосома содержит молекулу ДНК и ДНК-связывающие белки. Хроматин в составе хромосомы образует многочисленные петли, содержит множество плотно упакованных нуклеосом. В профазу и метафазу у млекопитающих хромосомы имеют х — или у-форму. В х-хромосомах имеется так называемая первичная перетяжка (центромера), связывающая плечи хромосом. Участки метафизарной хромосомы от центромеры до обоих ее концов называют плечами хромосомы. Плечи представляют собой двойные структуры, состоящие из примыкающих друг к другу s-хромосом. Первичная перетяжка содержит кинетохоры.

Если плечи хромосом равны, то такие хромосомы называются метацентртескими. Хромосомы, которые имеют короткие и длинные плечи, называются акроцентрическими. Почти равные или не сильно отличающиеся друг от друга по размерам плечи имеют субметацентрические хромосомы.

В одном из полюсов плеча хромосомы иногда можно встретить суженный участок — вторичную перетяжку. Дистальная зона плеча за вторичной перетяжкой называется спутником. Вторичная перетяжка содержит зону ядрышкового организатора.

Центромеры всех d-хромосом (с двойным набором ДНК) располагаются в одной плоскости — это экваториальная плоскость клетки. Она пересекает клетку под прямым углом к продольной оси веретена. В центромере имеется кинетохор — небольшая дисковидная структура, лежащая по обе стороны центромерного участка d-хромосомы. Кинетохоры так малы, что их можно увидеть только с помощью электронного микроскопа. В активном состоянии кинетохоры ведут себя подобно центриолям, то есть служат центрами организации микротрубочек (кинетохорные микротрубочки). Кинетохоры проявляют свою активность только с момента разрушения ядерной оболочки и при взаимодействии с тубулинами.

Среди микротрубочек веретена деления выделяют несколько видов: кинетохорные, полярные и астральные.

Кинетохорные микротрубочки присоединяются одним полюсом к кинетохору хромосомы, а другим к одной из диплосом и растаскивают хромосомы. Полярные микротрубочки направляются от центриолей (диплосом) к центру веретена деления, где взаимно перекрываются с подобными микротрубочками противоположной диплосомы.

Астральные микротрубочки направлены от диплосомы к поверхности клетки. Последние два вида микротрубочек служат для равномерного распределения цитоплазматического материала и цитокинеза.

Анафаза. Она начинается с расхождения дочерних хромосом к полюсам формирующихся клеток. Это происходит при непосредственном участии микротрубочек и идет со скоростью около 1 мкм/мин.

Благодаря расхождению из каждой d-хромосомы образуется по две s-хромосомы. В результате каждая клетка получает по идентичному диплоидному набору s-хромосом. По мере расхождения хромосом к полюсам кинетохорные мйкротрубочки укорачиваются и веретено деления вытягивается. Кроме разборки кинетохорных микротрубочек процесс расхождения генетического материала обеспечивают удлинение полярных микротрубочек и функциональная активность белков-транслокаторов.

Условно выделяют раннюю и позднюю анафазу, в зависимости от степени отделения генетического материала к противоположным полюсам. В целом, это самая короткая по времени стадия митоза.

Телофаза. Это окончательная стадия митоза. В телофазу хроматиды подходят к полюсам, продолжается равномерное распределение цитоплазматического материала клетки, в том числе и внеядерной наследственности; образуется ядерная оболочка, вновь формируются ядрышки. Завершает телофазу цитокинез клетки с разделением одной материнской на две дочерние клетки.

В раннюю телофазу конденсированные s-хромосомы располагаются в противоположных полюсах клетки вблизи клеточных центров и пока не меняют свою ориентацию.

Продолжаются процессы удлинения делящейся клетки. Плазмолемма втягивается между двумя дочерними ядрами в плоскости, перпендикулярной длинной оси веретена деления, и начинают контурировать две новые клетки.

В позднюю телофазу начинается деконденсация хромосом и образуются ядерные оболочки путем слияния пузырьков из ранее распавшейся кариолеммы, формируются ядрышки. Борозда деления углубляется, и между дочерними клетками остается цитоплазматический мостик, который в дальнейшем разделяется клеточной мембраной, что ведет к автономности дочерних клеток.

Образование клеточной мембраны, отделяющей две новые клетки друг от друга, происходит при сокращении микрофиламентов в области цитоплазматического мостика и за счет транспорта пузырьков, сливающихся друг с другом.

После цитотомии (разделение клеток) в клетках сливаются пузырьки, формируя ЭПС и комплекс Гольджи.

Митоз и митотический цикл — это не автоматические явления — их регулируют различные факторы. Наиболее изучены циклинзависимые киназы (протеинкиназы). Данные белки обозначают аббревиатурой Cdk. Эти белки близки у всех клеток животных организмов. Данные протеинкиназы фосфорилируют белки, контролирующие отдельные стадии митотического цикла, связывают специальные белки — циклины. Только комплекс Cdk с циклинами контролирует митотический цикл.

Каждой стадии митотического цикла соответствует свой циклин, запускающий комплекс биологических реакций клетки. В начальной стадии пресинтетического периода интерфазы клетка не переходит в Go-период за счет комплексов Cdk4 и Cdk6 с циклином D.

Во второй половине G1-периода ведущим контролирующим комплексом становится Cdk2 с циклином Е. В синтетическом периоде меняется циклин, но протеинкиназа остается. Так, в начале S-периода ведущим является комплекс диклин A-Cdk2, а затем — циклин B-Cdk2. В С2-периоде меняется не циклин, а протеинкиназа. В результате контролирующий комплекс обозначают как циклин B-Cdk1. Этот последний комплекс собственно и вводит клетку в митоз и называется митоз-стимулируюшим фактором.

Циклин B-Cdk1 способен фосфорилировать гистон Н1. Такой фосфорилированный гистон участвует в укладке (конденсации) нити ДНК. Но этого недостаточно. В прометафазу митоза митозстимулирующий фактор фосфорилирует также группу белков, комплекс которых называется конденсином и его образование как раз и запускается фосфорилированием. Под действием гистона Н1 и конденсина хромосомы укладываются в метафазные структуры. Этот процесс требует использования АТФ.

Кроме этого под действием митоз-стимулирующего фактора в профазу происходит фосфорилирование ламинов внутренней поверхности ядерной оболочки. В результате А — и С-ламины переходят в растворенное состояние. Структурная целостность оболочки нарушается, и она распадается на систему пузырьков. Подобное, возможно, возникает и в ЭПС с комплексом Гольджи.

Под влиянием митоз-стимулирующего фактора в профазу происходит активация полимеризации микротрубочек и блокада легких цепей миозина, что предупреждает преждевременную цитотомию клетки.

Клеточное деление регулируют две группы факторов: митогенные и антимитогенные, или кейлоны. Митогенные факторы вырабатываются в тканях (тканевые гормоны) и активизируют деление клеток, при этом численность популяции клеток увеличивается. К митогенным относят факторы роста фибробластов, эпидермиса, тромбоцитов, трансформирующие факторы роста и др.

Митогенные факторы вызывают деление клеток через активацию тирозинкиназы. Это стимулирует образование ряда факторов транскрипции, так называемых генов раннего и замедленного ответа. Изменение их активности стимулирует образование циклинзависимых киназ и циклинов. Это, в свою очередь, побуждает клетки к делению.

Концентрация факторов роста относительно невелика, и как только количество клеток значительно увеличивается, факторов роста становится недостаточно, а клетки, прекращая деление, начинают дифференцироваться. Некоторые авторы считают, что механизм прекращения деления и начало дифференцировки контролируют специальные биологически активные вещества — кейлоны или иные регуляторы. Примером такого регулятора служат йодированные гормоны щитовидной железы — трийодтиронин и тетрайодтиронин. Эти гормоны активизируют процессы дифференцировки клеток и блокируют деление. Важным в этом отношении является действие тетрайодтиронина на дифференцировку нейронов, в связи с чем при его недостатке развивается кретинизм, сопровождающийся умственной отсталостью (олигофренией).

Примером антимитогенного фактора может служить фактор некроза опухолей. Он блокирует образование комплекса митогенактивирующих протеинкиназ через ряд внутриклеточных посредников (сфингозин). В конечном итоге снижается содержание комплексов циклина D с Cdk6 и Cdk4, а деление клеток прекращается.

Вариантом митоза является дробление — это деление клеток, когда в короткую интерфазу не происходит увеличение материнской клетки. В результате после каждого деления размер клеток уменьшается. Дробление характерно для образования из одноклеточного зародыша (зиготы) многоклеточного организма (бластулы) в ранние сроки зародышевого развития.