Факультет

Студентам

Посетителям

Искусственный мутагенез

Искусственный мутагенез — новый важный источник создания исходного материала в селекции растений.

Применение ионизирующих излучений и химических мутагенов значительно увеличивает число мутаций. Однако значение экспериментального мутагенеза для селекции растений было понято не сразу.

А. А. Сапегин и Л. Н. Делоне — первые исследователи, показавшие значение искусственных мутаций для селекции растений. В их опытах, проводившихся в 1928—1932 гг. в Одессе и Харькове, была получена целая серия хозяйственно полезных мутантных форм у пшеницы. Несмотря на это, к применению экспериментального мутагенеза в селекции растений длительное время продолжали относиться отрицательно. Лишь в конце 50-х годов к экспериментальному мутагенезу проявили повышенный интерес. Он был связан, во-первых, с крупными успехами ядерной физики и химии, давшими возможность использовать для создания мутаций различные источники ионизирующих излучений и высокореактивные химические вещества, и, во-вторых, с получением этими методами на самых различных культурах практически ценных наследственных изменений.

Особенно широко работы по экспериментальному мутагенезу в селекции растений развернулись в последние годы. Очень интенсивно они ведутся в СССР, Швеции, Японии, США, Индии, Чехословакии, Франции и некоторых других странах. В Институте химической физики АН СССР под руководством И. А. Рапопорта создан центр по химическому мутагенезу, координирующий работу многих сельскохозяйственных научно-исследовательских учреждений, использующих индуцированные мутации в качестве исходного селекционного материала.

Большую ценность представляют мутации, обладающие устойчивостью к грибным и другим заболеваниям. Создание иммунных сортов — одна из главных задач селекции, и в ее успешном решении большую роль должны сыграть методы радиационного и химического мутагенеза.

С помощью ионизирующих излучений и химических мутагенов можно ликвидировать отдельные недостатки у сортов сельскохозяйственных культур и создавать формы с хозяйственно полезными признаками: неполегающие, морозостойкие, холодостойкие, скороспелые, с повышенным содержанием белка и клейковины.

Возможны два основных пути селекционного применения искусственных мутаций: прямое использование мутаций, полученных у самых лучших районированных сортов, и в процессе гибридизации.

В первом случае ставится задача улучшения существующих сортов по некоторым хозяйственно-биологическим признакам, исправления у них отдельных недостатков. Этот метод считается перспективным в селекции на устойчивость к заболеваниям. Предполагается, что у любого ценного сорта можно быстро получить мутации устойчивости и сохранить при этом нетронутыми другие хозяйственно-биологические признаки. Это дало бы возможность селекционерам быстро реагировать на расообразование паразитов.

Метод прямого использования мутаций рассчитан на быстрое создание исходного материала с нужными признаками и свойствами. Однако прямое и быстрое использование мутаций при тех высоких требованиях, которые предъявляются к современным селекционным сортам, далеко не всегда дает положительные результаты. Полученный вследствие мутагенеза исходный материал должен, как правило, пройти через гибридизацию. Это второй путь использования искусственных мутаций. В Краснодарском НИИСХ мутантный сорт ячменя Темп был включен в гибридизацию с контрастным по ряду признаков сортом западноевропейской селекции. Это обусловило огромное генетическое разнообразие форм и появление трансгрессивных линий. Из этих комбинаций был выделен сорт ярового ячменя Каскад, превосходящий исходные формы по урожаю и многим другим признакам.

Мутации могут изменять свое фенотипическое выражение в зависимости от того, в какой генотип они включаются. Особенно это относится к малым физиологическим мутациям. Поэтому скрещивание качественно меняет влияние отдельных мутаций на развитие многих признаков и свойств. Широко применяются также сочетание индуцированного мутагенеза с гибридизацией, обработка мутагенами гибридных семян F0, F1 и старших поколений, скрещивание мутантных форм между собой и с лучшими районированными сортами, беккроссовая гибридизация. Последняя проводится по следующей схеме:

Мутант любой формы с нужным X Данный исходный улучшаемый сорт единичным признаком Fx X Данный исходный улучшаемый сорт 1 X Данный исходный улучшаемый сорт

Используется экспериментальный мутагенез и совместно с отдаленной гибридизацией. Путем искусственных мутаций в ряде случаев удается преодолевать нескрещиваемость разных далеких видов растений, а также проводить пересадку путем транслокации отдельных локусов хромосом диких видов в хромосомный комплекс культурных растений. Так, Э. Сирсу (США) удалось перенести от эгилопса в геном пшеницы очень небольшой кусочек хромосомы, контролирующий устойчивость к ржавчине. В результате была получена нормально плодовитая форма, ничем не отличающаяся от пшеницы, но обладающая благодаря проведенной транслокации устойчивостью к ржавчине. Аналогичным путем Ф. Эллиот перенес от пырея в геном пшеницы локусы устойчивости к стеблевой ржавчине и головне.

Исключительный интерес представляет эксперимент Г. Штуббе (ГДР) по улучшению дикого мелкоплодного помидора в процессе мутагенеза. Путем многократного пятиступенчатого облучения лучами Рентгена и отбора он довел крупность плодов у этой формы до нормальных размеров.

Рядом исследователей установлено, что мутабильность отдаленных гибридов значительно выше, чем внутривидовых и обычных линейных сортов. Многочисленные опыты показали, что частота и характер возникающих мутаций в равной степени зависят как от вида мутагенов, так и от наследственности исходного сорта.

Выбор исходного сорта для получения мутаций так же важен, как подбор родительских пар при гибридизации. Для создания нужных мутаций необходимо учитывать способность сортов к образованию тех или иных мутаций, а также частоту их возникновения. Выявлено, что чем ближе сорта по своему происхождению и генотипу, тем они более сходны в частоте и характере возникающих мутаций, и, наоборот, чем генетически сорта менее родственны, тем более они различаются по мутационной изменчивости. Таким образом, закономерности искусственного мутагенеза у различных сортов подчиняются закону гомологических рядов в наследственной изменчивости.

Для получения хозяйственно ценных мутаций наиболее широко применяются гамма-лучи, лучи Рентгена и нейтроны, а из химических мутагенов — алкилирующие соединения: этиленимин, нитрозоэтилмочевина, этилметансульфонат и др.

Концентрация химических мутагенов и дозы ионизирующих излучений не должны быть очень высокими. Для облучения семян гамма-лучи и лучи Рентгена применяют в дозах от 5 до 10 кР; облучение быстрыми нейтронами проводят при дозах от 100 до 1000 рад. Если облучению подвергается пыльца, дозу уменьшают в 1,5—2 раза.

Химические мутагены обычно используют в виде водных растворов 0,05—0,2 %-ной концентрации при продолжительности намачивания семян от 12 до 24 ч. При этом обеспечивается лучшее выживание растений и сохранение среди них мутаций с хозяйственно полезными признаками. Не следует допускать большого разрыва во времени между обработкой семян и их посевом, так как в противном случае может снизиться всхожесть и возрасти повреждающий эффект. Чтобы снизить повреждающее действие мутагенов, обработанные семена рекомендуется промывать в проточной воде.

Различные поколения растений, полученных из семян от воздействия мутагенами, обозначают буквой М с соответствующими цифровыми индексами: М-1 — первое поколение, М-2 — второе и т. д.

Для получения хозяйственно полезных мутаций у какого-либо сорта рекомендуется подвергать мутагенному воздействию от 2 до 4 тыс. семян. Отбор мутаций чаще всего проводят в М2. Но так как в М1 выявляются не все мутации, его повторяют в М2. Иногда отбор начинают и в М1. В этом случае отбирают доминантные мутации, а также высокопродуктивные растения для последующего отбора в их потомстве генных мутаций, не связанных с хромосомными перестройками.

Первое поколение мутантов выращивают при оптимальных условиях питания и увлажнения. Растения М1 обмолачивают отдельно или совместно. При раздельном обмолоте во втором поколении высевают индивидуальные потомства (семьи) отдельных растений, что облегчает выделение мутаций с хозяйственно полезными признаками. Во втором поколении отбирают мутанты с хорошо выраженными ценными признаками и растения для получения малых мутаций в следующем поколении. В дальнейшем мутации подвергаются отбору или используются в скрещиваниях между собой или с сортами.

К настоящему времени в мире создано много мутантных сортов сельскохозяйственных растений. Некоторые из них имеют существенные преимущества в сравнении с исходными сортами. Ценные мутантные формы пшеницы, кукурузы, сон и других полевых и овощных культур получены в последние годы в научно — исследовательских учреждениях нашей страны. Районированы мутантные сорта озимой пшеницы Киянка, яровой пшеницы Новосибирская 67, ячменя Минский, Темп, Дебют, сои Универсал, люпина Киевский скороспелый, Горизонт и Днепр с повышенным содержанием белка, овса Зеленый, фасоли Санарис 75 и других культур.

Во Всесоюзном НИИ масличных культур впервые в мировой селекции методом химического мутагенеза создан сорт подсолнечника Первенец (оливковый мутант), в масле которого содержится до 75 % олеиновой кислоты. По качеству оно не уступает маслу, добываемому из плодов субтропического вечнозеленого оливкового дерева. Многие мутантные сорта в настоящее время изучаются в производственных условиях и испытываются на сортоучастках Госкомиссии по сортоиспытанию сельскохозяйственных культур.

Особое внимание селекционеров привлекает использование мутаций карликовости. С этой проблемой во многих странах связано осуществление селекционных программ по созданию короткостебельных сортов зерновых культур интенсивного типа, способных при орошении и внесении высоких доз минеральных удобрений давать урожай зерна 100 ц/га и выше. Одним из наиболее ценных доноров короткостебельности у пшеницы оказался старый японский озимый сорт Norin 10, обладающий тремя парами спонтанно возникших рецессивных генов карликовости dw (от англ. dwarf — карлик) с неравнозначным эффектом (dwx>dw2>dwz).

Если обычный сорт имеет высоту стебля более 150 см, у полукарликовых сортов с одним геном карликовости высота стебля составляет 100—110 см, а у сортов с двумя и тремя генами карликовости соответственно 70—90 и 45—50 см.

Исключительно эффективной оказалась работа по созданию короткостебельных сортов пшеницы с использованием генов Norin 10 в Мексиканском международном центре по улучшению пшеницы и кукурузы (СИММИТ). Во многих странах на основе мексиканских карликовых пшениц созданы собственные приспособленные к местным условиям короткостебельные сорта интенсивного типа.

Наряду с рецессивными генами карликовости сорта Norin 10 в селекции сортов интенсивного типа используют доминантные гены, носителями которых являются тибетская пшеница Тот Роисе (Том Пус) и родезийский сорт Olsen Dwarfs. Эти гены снижают высоту стебля у пшеницы еще сильнее, чем рецессивные. Используя их, можно создавать ультранизкорослые трехгенные карликовые сорта с высотой стебля 30—35 см. Предполагается, что получение таких сортов позволит поднять урожайный потенциал пшеницы в условиях очень интенсивной культуры земледелия до 150 ц/га и выше. В Краснодарском НИИСХ путем химического мутагенеза получены карликовые мутанты из сортов озимой пшеницы Безостая 1 и Мироновская 808. Карликовые мутанты Безостой 1, имеющие хорошие качества зерна и более высокую зимостойкость, широко используются в гибридизации.

На основе мутанта Краснодарский карлик за 6 лет выведен неполегающий сорт озимой пшеницы интенсивного типа Полукарликовая 49. Для получения высокопродуктивных сортов озимой ржи селекционными учреждениями нашей страны успешно используется естественный мутант EM-I, несущий доминантный ген короткостебельности.

С помощью карликовых мутантов риса удалось создать сорта, устойчивые к полеганкю, отзывчивые на высокие дозы минеральных удобрений, а также отличающиеся благодаря нейтральной фотопериодической реакции высокой пластичностью.

Ценные мутантные сорта ячменя получены в Австрии, ФРГ, ГДР, США, Чехословакии, Швеции. В Краснодарском НИИСХ путем химического мутагенеза из сорта озимого ячменя Завет получен устойчивый к полеганию полукарлик 55М1. В этом же институте получен гигантский широколистный толстостебельный мутант овса и на его основе создан сорт Зеленый, дающий очень высокий урожай кормовой массы.

Используется мутагенез и для получения карликовых гибридов кукурузы. У таких гибридов предполагается повысить урожайность и ускорить созревание за счет снижения затрат питательных веществ и воды на рост стебля, что одновременно позволит выращивать их при значительно большей густоте стояния растений и применять в повторных посевах.

Исключительно велико значение биохимических мутаций. Так, у кукурузы спонтанные мутации белкового комплекса opaque-2 (тусклый-2) и floury-2 (мучнистый-2) послужили основой для создания гибридов с высоким содержанием незаменимых аминокислот. Рецессивный ген увеличивает содержание лизина в различных генотипах в 1,5—2 раза. Полудоминантный ген fl2 обладает такой способностью в меньшей степени, под его контролем значительно повышается содержание метионина. При этом сокращается количество зеина и увеличивается содержание других белков, более богатых указанными аминокислотами. В нашей стране созданы первые высоколизиновые гибриды кукурузы Краснодарский 82ВЛ, Краснодарский 303ВЛ, Геркулес Л. В их белке содержится примерно в 1,5 раза больше лизина, чем у обычных гибридов. Животные на откорме зерном высоколизиновых гибридов кукурузы значительно увеличивают привесы, а затраты кормов при этом намного ниже, чем при рационах с обычной кукурузой.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.



Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: