Факультет

Студентам

Посетителям

Загадка специфичности иммунологического узнавания паразитов у растений

Нет ничего специфичнее иммунологического узнавания. Биологам это хорошо известно.

Как же в таком случае микроорганизм может паразитировать, если на его поверхности находятся элиситеры, распознаваемые растением-хозяином? Значит, для того чтобы существовать, паразит должен суметь обмануть распознающие системы растения-хозяина. К таким «уловкам» паразит, действительно, прибегает, и их по меньшей мере может быть несколько. Попробуем рассказать о некоторых из них.

Первая возможность. Поскольку элиситеры, находящиеся на поверхности взаимодействия паразита и хозяина, позволяют последнему распознавать и отторгать паразита, то патогену проще всего было бы совсем убрать элиситеры из своего состава. Однако мы уже говорили, что те вещества паразита, которые растения превратили в своих провокаторов, выполняют у патогена определенные функции. Поэтому от провокаторов, хотя и нужно, но сложно избавиться, поскольку паразиту без них не обойтись. К тому же, если патоген ликвидирует один провокатор, то растение может приобретать способность распознавать другой, а затем и третий и т. д. Поэтому маловероятно, чтобы подобный путь «утери» элиситеров был генеральным способом избежать распознавания. Хотя кое-какие экспериментальные данные свидетельствуют в его пользу.

Это прежде всего явление большей выживаемости менее вирулентных рас по сравнению с более вирулентными, получившее название «стабилизирующий отбор». Такой отбор обеспечивает устойчивость данного вида или популяции к изменениям. Предположим, в популяции паразита появляется раса с генами вирулентности, позволяющими ей преодолеть комплементарные гены устойчивости хозяина. Это ставит ее в положение вне конкуренции с другими расами, поскольку только она способна поражать устойчивую форму растения, которую другие расы поражать не в состоянии. Но это же делает вирулентную расу менее жизнеспособной и конкурентоспособной в сапрофитной фазе или на восприимчивых сортах растений. На этой фазе простые расы, не имеющие генов вирулентности или имеющие их в меньшем количестве, будут вытеснять высоковирулентную расу. Излишняя вирулентность понижает способность к выживанию. Значит, раса приобретает новые гены вирулентности за счет неких потерь, которые сделали ее менее жизнеспособной. Поистине, любые блага приобретаются ценой потерь. Возможно, что потерей в данном случае и была утеря метаболита, выполняющего роль провокатора, хотя, так ли это в действительности, пока еще сказать трудно.

Вторая возможность избежать распознавания состоит не в утере паразитом элиситеров, а в их маскировке. Элиситеры присутствуют, но только не на поверхности патогена, чтобы не быть распознанными растением. А что же находится на поверхности? А на поверхности паразита в целом ряде случаев могут располагаться вещества, которые имеются у самого растения. Да, да, мы не оговорились, на поверхности паразита располагаются вещества, имеющиеся у растения, или вещества, весьма похожие на вещества растения. Естественно, что растение не будет принимать за чужеродные свои собственные вещества. Оно как бы находится в заблуждении, клетки чувствуют себя неповрежденными, и ничто не оповещает их о грозящей опасности. Чем не тактика троянского коня? Вспомните, как греки длительное время безуспешно осаждали Трою и, наконец, оставили у ворот города сделанного ими коня, внутри которого находились вооруженные воины. Любопытные горожане втащили коня в городские ворота. Ночью из коня вышли воины, которые открыли ворота войскам противника. Примерно так же действует и паразит, и его тактика носит название «молекулярная мимикрия».

Мимикрия — маскировка. Помните бабочку, маскирующуюся под листок; червя, прикидывающегося сучком; безобидную муху угрожающей окраски. Явление молекулярной мимикрии в фитоиммунологии было впервые установлено Т. И. Федотовой, а затем подтверждено Н. Н. Гусевой и Б. Б. Громовой. Было замечено, что паразит и его растение-хозяин имеют общие вещества — антигены. И чем больше общих антигенов имеет паразит с растением, тем больше вероятность поражения растения данным паразитом.

Предполагается, что на поверхности паразита, взаимодействующего с растением, находятся хорошо знакомые растению антигены, тогда как индукторы паразита спрятаны где-то глубоко под ними. Паразит не распознается и беспрепятственно проникает в растение.

Третья возможность предотвратить распознавание паразита растением состоит в таком изменении молекулы элиситера, в результате чего она становится неузнаваемой для растения. Предполагается, что элиситеры, находящиеся на поверхности растения, являются как бы антигенной детерминантой для их распознавания рецепторными белками хозяина. При взаимодействии их продуктов включается реакция СВЧ и происходит отторжение паразита. Предположим, что у совместимого паразита или его расы происходит какое-то изменение молекул элиситера, в результате чего они перестают быть комплементарными рецепторным участкам растения и ими не распознаются. Такие элиситеры будут вызывать защитные реакции у устойчивых сортов растений и не будут вызывать их у восприимчивых, т. е будут обладать специфичностью действия. Поэтому их и называли специфическими.

К сожалению, о специфических элиситерах пока еще мало известно. Но все-таки кое-какие данные на этот счет уже есть. Например, специфический элиситер был обнаружен в клеточных стенках и выделениях возбудителя фитофтороза сои. Элиситер оказался гликопротеином, состоящим на 70—90% из белка и примерно на 10% из углеводов, которые, по-видимому, и ответственны за его активность.

Поверхностными гликопротеинами оказались специфические элиситеры, выделенные из возбудителей антракноза фасоли и бактериоза сои.

Предполагается, что липополисахарид наружной мембраны бактерий обладает свойствами специфического элиситера. Мы уже писали, что сапрофитные, либо убитые нагреванием, либо, наконец, гетерологичные (несовместимые) для данного вида растений, бактерии иммобилизуются в их межклеточном пространстве. При этом бактерии как бы окутываются гранулярным и фибриллярным материалом, транспортирующимся везикулами из растительных клеток, и с помощью этого материала прикрепляются к клеточной стенке растения. В результате прикрепления наступает тесный контакт растительных клеток с липополисахаридом, который и распознается. Установлено, что его состав коррелирует со способностью бактерии, из которой он выделен, индуцировать реакцию СВЧ. Так, липополисахарид штаммов, которые индуцировали СВЧ, отличался от такового у неиндуцирующих штаммов молекулярной массой и отношением ксилозы и рамнозы к глюкозе.

Однако число элиситеров, обладающих специфическими свойствами, пока еще крайне ограниченно. Возможно, это зависит от того, что обнаружению специфических элиситеров мешают неспецифические, которые наряду со специфическими присутствуют у паразитов. Возможно, искать специфические элиситеры у фитопатогенов в искусственной культуре, как это делают исследователи, бесполезно, поскольку при этих условиях не могут проявиться их паразитические свойства.

Итак, наличие специфических элиситеров пока еще находится под сомнением, тогда как большинство известных к настоящему времени элиситеров обладает неспецифическими свойствами. Это означает, что они присутствуют у всех рас фитопатогенов, независимо от наличия у них генов вирулептности, и с их помощью можно индуцировать защитные реакции у всех сортов растений, независимо от присутствия у них генов устойчивости.

Маловероятно, чтобы растения обладали отдельными распознающими системами на каждый вид и расу фитопатогенов, с которыми им приходится сталкиваться в природе. Скорее всего, в роли неспецифических элиситеров могут служить структурные полисахариды клеточных стенок микроорганизмов.

Как же проникают в растения те фитопатогены, которые обладают незамаскированными неспецифическими элиситерами? Здесь мы расскажем о четвертой возможности, которая состоит в наличии у паразитов антиметаболитов, перекрывающих действие элиситеров. Речь идет о присутствии у некоторых паразитов аитиэлиситеров, или супрессоров, которые в противовес элиситерам не индуцируют, а, наоборот, подавляют защитные реакции растений.

Супрессоры характерны не только для иммунных систем растений, но и животных. В начале 70-х годов была открыта особая группа лимфоцитов — супрессоров, оказывающая подавляющее действие на иммунные лимфоциты.

По-видимому, для каждой системы живого организма необходима специфическая антисистема, которая регулирует эту систему по принципу обратной связи.

В растительном мире супрессоры-антииндукторы были открыты через несколько лет после обнаружения индукторов-элиситеров. Предпосылкой к созданию таких представлений послужил давно установленный факт, что растение, зараженное совместимой расой того или иного патогена, становится восприимчивым не только к авирулентной расе того же патогена, но и к непатогенам, т. е. микроорганизмам, которые ранее не были способны поражать данный вид растения. Так, предварительное заражение ячменя вирулентной расой мучнистой росы сделало его восприимчивым не только к авирулентной расе того же паразита, но даже к возбудителю мучнистой росы дыни. Заражение картофеля совместимой расой возбудителя фитофтороза делало его восприимчивым к целому ряду микроорганизмов, обычно не поражающих неповрежденный картофель, даже к сапрофитам.

Недаром существует выражение «вторичные инфекции», т. е. инфекции, возникающие на уже инфицированном растении.

Возможно, одной из причин вторичных инфекций являются супрессоры, подавляющие защитные реакции растения. По-видимому, супрессоры фитопатогенных микроорганизмов можно разделить на две группы: одни убивают или повреждают растительные клетки, тогда как другие только блокируют, задерживают защитные реакции. Если исходить из такой классификации, то к первой группе супрессоров следует отнести токсины паразитов. Естественно, что растительная клетка, убитая токсинами паразита, лишается способности распознавать патоген, а тем более отвечать защитными реакциями.

Ко второй группе супрессоров относятся импедины (от английского to impede — препятствовать, задерживать), название которых заимствовано из медицины, где он означает нетоксический бактериальный фактор, подавляющий защитный механизм хозяина. По-видимому, подобное разделение супрессоров на токсины и импедины отражает разделение патогенов на некротрофы и биотрофы. Некротрофы продуцируют токсины, убивающие клетку на некотором расстоянии от самого паразита, биотрофы — супрессоры типа импединов, которые выделяются патогеном при непосредственном взаимодействии с растительной клеткой. О токсинах фитопатогенов мы уже говорили. А вот историю изучения импединов у растений интересно рассмотреть на примере открытия специфического супрессора у возбудителя фитофтороза картофеля.

В течение двух последних десятилетий исследователи, в том числе и авторы этой книги, упорно искали причину того, почему одна раса паразита поражает данный сорт картофеля, тогда как к другой авирулентной расе этот же сорт оказывается устойчивым. Обе расы морфологически не отличаются друг от друга, обе содержат в своем составе неспецифические индукторы защитных реакций, обе в равной мере чувствительны к токсическому действию фитоалексинов. Так в чем же, собственно, дело?

И тогда ученые вспомнили старые опыты, согласно которым заражение картофеля вирулентной расой возбудителя фитофтороза лишало его способности отвечать реакцией СВЧ на последующее заражение авирулентной расой. Значит, в составе вирулентной расы есть какой-то фактор, который мешает отвечать картофелю защитными реакциями. Этот гипотетический фактор вначале так и назвали фактором совместимости. Присутствие этого фактора явно чувствовалось, когда из возбудителя фитофтороза картофеля начинали выделять индуктор защитных реакций липогликопротеидный комплекс. Неочищенный индуктор, выделенный из вирулентной расы паразита, оказался значительно менее активным, чем такой же, по выделенный из авирулентной расы. Явно чувствовалось, что в неочищенном индукторе присутствует некое вещество, которое мешает индуктору проявлять свою активность. Но мешает только в совместимой комбинации гриба и растения и не мешает, если комбинация является несовместимой. И такой супрессор был наконец выделен параллельно и независимо нами и объединенной группой американских и японских исследователей.

Ими оказались низкомолекулярные глюканы со связями β-1,3 в основной цепи и связями β-1,6 в местах разветвлений. Молекулярная масса глюканов составляла около 3000—4000 Дальтон.

Было испытано большое число комбинаций сортов хозяина и паразита, и всюду, где глюканы были выделены из совместимой к данному сорту расы гриба, они проявляли свойства супрессора, а если они были выделены из несовместимой расы, то таким действием не обладали. Иными словами, глюканы оказались специфическими, их действие в точности отражало взаимоотношения сорта и расы паразита.

Такие глюканы обнаружены внутри гиф паразита и в составе его выделений. Дело в том, что грибы рода Pliytophthora имеют своеобразное строение клеточных стенок, которые на 75% состоят из высокомолекулярных β-1,3 — β-1,6-глюканов. Низкомолекулярпые глюканы-супрессоры, по-видимому, служат строительным материалом для образования клеточных стенок, которые вместе с соответствующими ферментами в виде пузырьков везикул подходят к кончику гифы паразита, где и происходит построение клеточной стенки. Стенка гифы строится на ее растущем конце. Здесь глюканы изливаются из везикул и могут выделяться наружу и попадать в инфицированное растение, где и выполняют роль супрессоров.

Предполагается, что при взаимодействии паразита с цитоплазматической мембраной растения высокомолекулярные глюканы клеточных стенок (элиситеры) распознаются рецепторными белками на цитоплазматической мембране, индуцируя тем самым реакцию СВЧ. При совместимой комбинации хозяина и паразита взаимодействию элиситеров с рецепторами препятствуют низкомолекулярные глюканы — супрессоры, которые выделяются на конце растущей гифы.

На основании этих работ была предложена схема взаимодействия метаболитов хозяина и паразита, объясняющая на молекулярном уровне гипотезу ген—на—ген. Иными словами, кто кого преодолеет: элиситер супрессора или супрессор элиситера. Если рецепторный участок у растения захватит индуктор, включится устойчивость, если же, наоборот, супрессор — восприимчивость. Вспомните, в первой части книги мы предлагали гипотетическую схему возникновения генов устойчивости растения и вирулентности паразита в самых общих чертах и обещали интерпретировать ее на молекулярном уровне.

Гипотеза основывается на предположении, что у молекулы супрессора имеется два активных центра: неспецифическая группировка, которая конкурирует с элиситером за рецепторный участок у хозяина, и специфическая группировка, контролирующая распознавание молекул супрессора продуктами генов устойчивости растения (продуктами R-генов). Первая группировка молекулы супрессора, конкурирующая с индуктором, постоянна, вторая — изменчива, вариабельна.

Основным положением гипотезы является следующее: растение не поражается паразитом до тех пор, пока распознает на его поверхности элиситеры, которые служат сигналом для включения системы защиты. Для того чтобы преодолеть барьер неспецифического (видового) иммунитета, паразит приобретает супрессор, который, конкурируя с элиситером за рецептор растения и имея большее к нему сродство, занимает соответствующий рецепторный участок хозяина и тем препятствует включению защитных реакций с его стороны.

В ходе сопряженной эволюции с паразитом у растения появляются гены сортовой устойчивости (или R-гены). Предполагается, что их продуктом является некое вещество, или рецептор, у растения, которое связывает супрессор по его вариабельной группировке и тем самым как бы «уводит» его с поверхности взаимодействия паразита и хозяина, оставляя элиситер вне конкуренции. Не имеющий более конкурентов элиситер вновь вступает во взаимодействие с рецептором, индуцируя у него защитные реакции. Такое растение приобретает сортовую устойчивость к патогену, основанную на наличии у него R-гена.

В результате мутации вариабельная часть супрессора (та самая часть, которая связывалась продуктом R-гена) изменяется так, что теряет комплементарность к продукту R-гена и перестает им связываться. Супрессор вновь оказывается на свободе и начинает вытеснять элиситер в борьбе за рецептор. Так возникает ген вирулентности паразита, способный преодолевать ген устойчивости.

Далее процесс повторяется. Отдельные особи среди популяции растения приобретают способность узнавать и связывать вновь возникшую изменившуюся часть молекулы супрессора. Возникает ген устойчивости R2, а паразит, изменяя свою вариабельную часть (ген вирулентности), преодолевает и эту уловку растения.

Вот вам тот же самый эволюционный марафон, с которого мы начинали книгу, но уже на молекулярном уровне. Растение убегает, паразит догоняет. Растение всегда впереди, стремясь уйти от инфекции, а паразит в лице преследующего легко нагоняет своего партнера.

Гипотеза не претендует на универсальность, к тому же она все еще остается одной из; многих гипотез, объясняющих взаимоотношения паразита и хозяина. Мы приводим ее, поскольку она наиболее наглядно позволяет изобразить те схемы взаимодействия продуктов генов устойчивости хозяина и авирулентности паразита, которыми сейчас увлекаются фитоиммунологи.

Кто-то назвал гипотезу строительными лесами вокруг здания, которые помогают его возводить, в том случае, если они поставлены верно. В противном случае их приходится разбирать и начинать все с самого начала.

Наиболее уязвимым местом этой и подобных гипотез является почти полное отсутствие сведений о рецепторе для индуктора и супрессора, кроме уверенности, что они должны быть. Фитоиммунологи последовательно вытягивают из темноты небытия цепь за цепью: сначала фитоалексины, которые позволили обнаружить элиситеры, элиситеры привели к обнаружению супрессора, а те и другие должны вытянуть рецепторы. Будем надеяться, что это вскоре произойдет.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.



Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: