Факультет

Студентам

Посетителям

Полимеразная цепная реакция (ПЦР)

Часто используется в качестве экспресс-метода для индикации и идентификации вирусов.

Впервые этот метод разработал К. Мюллис (США) в 1983 т. Благодаря высокой чувствительности, специфичности и простоте выполнения его широко применяют в генетике, судебной медицине, диагностике и других областях.

Суть метода — амплификация, т. е. увеличение числа копий строго определенных фрагментов молекулы ДНК in vitro. В этом методе действуют матричный механизм и принцип комплементарности. Две одинарные полинуклеотидные цепи (нуклеиновой кислоты) способны связываться водородными связями в одну двуспиральную, если последовательности нуклеотидов одной точно соответствуют последовательности нуклеотидов другой так, что их азотистые основания могут образовывать пары аденин—тимин и гуанин—цитозин.

ПЦР основана на амплификации ДНК с помощью термостабильной ДНК-полимеразы, осуществляющей синтез взаимно комплементарных цепей ДНК, начиная с двух праймеров. Праймер — это фрагмент ДНК, состоящий из 20—30 нуклеотидов. Эти праймеры (затравки) комплементарны противоположным цепям ДНК. При синтезе ДНК праймеры встраиваются в цепь новосинтезирующихся молекул ДНК.

Обычно ПЦР ставят в 25—40 циклов. Каждый цикл включает три этапа: первый — денатурация при 92—95 °С. При этом две цепи ДНК расходятся; второй — отжиг, или присоединение праймеров при 50—65 °С; третий — элонгация, или полимеризация при 68—72 °С, при этом ДНК-полимераза осуществляет комплементарное достраивание цепей ДНК-матрицы с помощью четырех видов нуклеотидов. В результате одного цикла происходит удвоение искомого генетического материала. Образовавшиеся в первом цикле цепи ДНК служат матрицами для второго цикла и т. д. После первого цикла амплифицируется только фрагмент между двумя праймерами. Таким образом, идет удвоение числа копий амплифицируемого участка, что позволяет за 25—40 циклов насинтезировать миллионы (2n) фрагментов ДНК — количество, достаточное для индикации их различными методами (методом гибридизационных зондов, содержащих определенную метку, электрофорезом и т. д.). Чаще для этой цели используют метод электрофореза в агарозном геле с окрашиванием бромистым этидием.

В ПЦР из участков ДНК возбудителя используют праймеры, которые имеют уникальную последовательность нуклеотидов, характерных только для определенного возбудителя.

Методика постановки ПЦР сводится к следующему: из исследуемого материала выделяют ДНК-матрицу; в пробирке соединяют выделенную ДНК с амплификационной смесью, в которую входят ДНК-полимераза, все 4 вида нуклеотидов, 2 вида праймеров, MgCl, буфер, деионизированная вода и минеральное масло. Затем пробирки помещают в амплификатор, и проводят амплификацию в автоматическом режиме по заданной программе, соответствующей виду возбудителя. Результаты регистрируют чаще методом электрофореза в 1—2%-ном агарозном геле в присутствии бромистого этидия, который соединяется с фрагментами ДНК и выявляется в виде светящихся полос при облучении геля УФ-лучами на трансиллюминаторе. Все процедуры ПЦР занимают 1—2 рабочих дня.

С целью повышения специфичности и чувствительности ПЦР применяют различные варианты: гнездовую ПЦР; ПЦР с «горячим стартом» с использованием парафиновой прослойки или блокады активных центров полимеразы моноклональными антителами. Кроме того, некоторые фирмы выпускают лиофилизированные наборы реагентов для проведения амплификации ДНК, которые позволяют ускорить процесс проведения ПЦР и уменьшить возможность появления ложноположительных результатов.

В настоящее время внедряется новая технология ПЦР—ПЦР в реальном времени (Real-Time PCR). Ее принципиальная особенность — мониторинг и количественный анализ накопления продуктов полимеразной цепной реакции и автоматическая регистрация и интерпретация полученных результатов. Этот метод не требует стадии электрофореза, что позволяет снизить предъявляемые к ПЦР требования лаборатории. ПЦР в реальном времени используют флуоресцентно-меченые олигонуклеотидные зонды для детекции ДНК в процессе ее амплификации. ПЦР в реальном времени позволяет провести полный анализ пробы в течение 20—60 мин и теоретически способа детективировать даже одну молекулу ДНК или РНК в пробе.

Система детекции продукта в полимеразной цепной реакции «real-time» (мониторинговая ПЦР) позволяет цикл за циклом следить за накоплением амплифицированной ДНК. Система включает и себя олигонуклеотидный зонд, который способен присоединяться (гибридизироваться) к внутреннему сегменту ДНК-мишени. На 5′-конце зонд помечен флуоресцентным красителем-репортером (reporter dye), а на 3′-конце — блокатором (quencher dye). По мере накопления продукта ПЦР зонд гибридизируется к нему, однако свечения не происходит из-за близости между репортером и блокатором. В результате копирования последовательности полимераза достигает 5′-конца зонда. 5’—3′-экзонуклеазная активность полимеразы отсоединяет флуоресцентную метку с 3′-конца пробы, тем самым освобождая флуоресцирующий репортер от его связи с блокатором сигнала, что и приводит к увеличению флуоресценции. Уровень флуоресценции, таким образом, пропорционален количеству специфичного продукта реакции. Важно, что результаты ПЦР регистрируются по наличию флуоресценции в закрытых пробирках и, таким образом, решается еще одна из основных проблем этого метода — проблема контаминации ампликонами.

Достоинства ПЦР: быстрота анализа; высокие чувствительность и специфичность; минимальное количество исследуемого материала; простота в исполнении и возможность полной автоматизации.

Ввиду того что чувствительность ПЦР может достигать до детекции одной копии ДНК-матрицы, существует высокая степень опасности получения ложноположительных результатов. Поэтому генно-диагностической лабораторией при постановке ПЦР необходимо неуклонно выполнять специальные требования к планировке и режиму работы.

ПЦР является одним из дополняющих методов, существующих в вирусологической диагностике. Эта реакция очень важна для диагностики вирусных инфекций, когда вирусные антигены или вирусспецифические антитела не могут быть обнаружены и когда присутствие вирусной нуклеиновой кислоты может быть единственным свидетельством заражения, особенно при латентно протекающих и смешанных инфекциях.