Факультет

Студентам

Посетителям

Действие химических веществ на живые организмы. Токсичность

Последствия действия загрязняющих веществ на живые организмы зависит от четырех групп факторов: 1) химических и физических свойств соединений; 2) дозы загрязняющих веществ; 3) времени их воздействия; 4) индивидуальных особенностей организма.

Химические вещества, окружающие обитателей планеты Земля, можно разделить на две группы: вещества, свойственные природе и чуждые ей (ксенобиотики). Природе свойственны все химические элементы естественного происхождения периодической системы Д. И. Менделеева. Они присутствуют во всех природных сферах, где распределяются в соответствии с их химическими свойствами и с особенностями той или иной среды (воздушной, водной, литологической), в том числе и биотической. Будучи естественными составляющими организмов животных, растений, человека, микроорганизмов, грибов, они не могут быть названы токсичными.

Что касается ксенобиотиков (пестицидов, препаратов бытовой химии и пр.), они призваны выполнять те функции, для которых они были созданы (уничтожение вредителей сельскохозяйственных растений, нежелательных для производственной и бытовой сферы человека грызунов, насекомых и других живых организмов). Так как они по существу являются биоцидами (от слов «био» — жизнь и «цидо» — убивать), то их остаточные количества в природных средах не должны попадать в живые организмы, не являющиеся мишенями для них. Эффект их токсичного действия на живые организмы (особенно возможность его закрепления на генетическом уровне) нуждается в тщательном изучении.

Токсичность химического вещества — это присущая ему внутренняя способность в определенных концентрациях оказывать вредное влияние на живые организмы, которое проявляется только при взаимодействии с ними. Представляется важным в определение понятия токсичности введение указания на концентрацию веществ. Ведь среди веществ природного происхождения токсичных веществ нет, есть токсичные концентрации Эти идеи высказывали В. И. Вернадский, А. П. Виноградов, В. В. Ковальский.

Механизмы действия на живые организмы химических веществ, присутствующих в окружающей среде, целесообразно рассмотреть на примере микроэлементов Микроэлементами называют химические элементы, имеющие распространение в природе в микроколичествах (103—106 %) Для многих микроэлементов доказано их участие в важнейших биохимических процессах.

Необходимость микроэлементов в оптимальных количествах живым организмам обусловлена их присутствием в составе многих ферментов, катализирующих важные биохимические реакции Высокая биохимическая активность микроэлементов связана со строением их атомов. Все они относятся к переходным элементам d-семейства (Ni, V, Cr, Mn, Fe, Co, Cu), в нейтральных свободных атомах которых d-подуровни частично заполнены электронами. Близки к ним по свойствам и элементы р-семейства (As, Se, Ga, Ge) Стремление к полностью завершенному d-подуровню определяет химические свойства этих элементов. Для участия в важнейших биохимических процессах важна их способность иметь разную степень окисления (Cu, Fe, Hg), высокую склонность к гидролизу (Zn, Cu), способность к комплексообразованию (Cu, Zn, Pb, Hg).

Микроэлементы являются активаторами многих ферментов. Ферменты обеспечивают реакции синтеза, распада и обмена веществ в живых организмах.

Без требуемых количеств микроэлементов в воде, воздухе, пище нормальное функционирование живых организмов невозможно.

Главные реакции, связанные с токсичным действием избытка элементов, следующие (Кабата-Пендиас, Пендиас, 1989).

1) изменение проницаемости клеточных мембран Ag, Au, Br, Cd, Cu, F, Hg, I, Pb;

2) реакции тиольных групп с катионами: Ag, Hg, Pb,

3) конкуренция с жизненно важными метаболитами: As, Sb, Se, Те, W, F;

4) большое сродство к фосфатным группам и активным центрам в АДФ и АТФ Al, Be, Sc, Y, Zr, лантаноиды, тяжелые металлы;

5) замещение жизненно важных ионов (главным образом макрокатионов) Cs, Li, Rb, Se, Sr;

6) захват в молекулах позиций, занимаемых жизненно важными функциональными группами, такими, как фосфат и нитрат, арсенат, фторид, борат, селенат, теллурат, вольфрамат.

В настоящее время установлена прямая связь между содержанием в окружающей среде (в почве, в воде) микроэлементов (Mn, Cu, Zn, Мо, В и др.) и фотосинтезом, белковым обменом, ростовыми процессами, устойчивостью растений к неблагоприятным факторам внешней среды, таким, как недостаток влаги, повышенные или пониженные температуры, устойчивость к болезням.

Так как микроэлементы играют важную роль в судьбе живых организмов, последние чутко реагируют как на недостаток, так и на избыток их в окружающей среде. Выделяется три типа геохимических (биогеохимических) ситуаций, вызывающих нарушения функционирования живых организмов и в крайних случаях приводящих к возникновению эндемических заболеваний: 1) дефицит микроэлемента (или микроэлементов) в компонентах среды; 2) повышенное содержание микроэлемента (или микроэлементов); 3) нарушение оптимального соотношения микроэлементов.

Эти геохимические ситуации оказывают специфическое влияние на живые организмы.

Специфическое действие обусловлено участием химических элементов в определенных биохимических реакциях в живых организмах. Проявляется оно, как правило, при резком дефиците или при воздействии высоких концентраций этих элементов. Виды специфического действия химических веществ на живые организмы разнообразны. Они оказывают:

1) канцерогенное влияние, т. е. вызывают злокачественные образования. Различают истинные канцерогены, канцероподобные, коканцерогенные вещества. К истинным канцерогенам относятся те, которые непосредственно ведут к злокачественной трансформации клеток в живых организмах. Такой способностью обладают полиароматические углеводороды, нитрозосоединения и один из самых сильных канцерогенов — бенз(а)пирен. Проканцерогены — вещества, метаболиты которых оказывают канцерогенное действие. Коканцерогены — вещества, которые оказывают влияние на развитие злокачественного процесса (смолы, кротоновые масла, эмульгаторы, фенолы, некоторые фракции табачного дыма и перегретых жиров);

2) тератогенное действие, с которым связаны пороки индивидуального развития, а также уродства в различных организмах. Эти изменения могут наблюдаться на уровне индивидуума, но могут быть закреплены и на генетическом уровне (определенного вида клеток или генотипа организма в целом). Примером могут служить гигантизм, карликовость растений в зоне геохимических аномалий. Наличие морфологических изменений растений используется при поиске металлических руд в регионе. Тератогенный эффект может вызвать избыток, недостаток элементов в окружающей среде или нарушение их соотношения. Он может быть спровоцирован также ксенобиотиками, например, пестицидами;

3) эмбриотропное действие (применительно к позвоночным животным его называют бластогенным), состоящее в нарушении развития эмбриона и вследствие этого возникновение уродств, различных аномалий живых организмов. Под влиянием алкоголя, свинца, ртути, недостаточно изученных лекарственных препаратов возможны внутриутробные пороки плода на разных стадиях его развития и даже гибель. Примером может быть лекарственный препарат талидомид, который был рекомендован как снотворное средство, но вскоре был запрещен, так как вызывал заболевание нервной системы, общую задержку роста, кожные язвы;

4) аллергическое действие состоит в нарушении реакции организмов на повторное воздействие на них микробов, чужеродных белков, которое ведет к снижению иммунитета. Вызывают различные вещества природного и техногенного происхождения.

Возможно и неспецифическое влияние химических веществ на живые организмы, которое наблюдается при воздействии малых концентраций этих веществ в течение длительного времени. Оно вызывает у живых организмов обострение болезней, вызванных причинами, не связанными с нарушением биохимических процессов, протекающих с участием этих веществ. Они усугубляют действие прямых источников болезни, что ведет к обострению хронических болезней, нарушению функционирования системы в ее наиболее слабом звене или к дисгармонии системы в целом.

В. В. Ковальским была разработана теория о взаимосвязи между химическим составом живых организмов и содержанием химических элементов в окружающей среде. Согласно этой теории, для живых организмов благоприятны оптимальные концентрации химических элементов во внешней среде, опасны для них как пониженные, так и повышенные концентрации этих веществ.

Из концепции о пределах возможного нормального развития живых организмов следует, что все химические элементы, созданные природой, необходимы для живых организмов. Еще относительно недавно (50—60-е гг.) специалисты выясняли причины недостатка в почвах таких микроэлементов, как Cu, Zn, Мо, Mn, и разрабатывали приемы его устранения. В настоящее время, напротив, в центре внимания оказались ситуации, связанные с избытком в окружающей среде этих и других элементов, которые стали называть тяжелыми металлами. Если на данный момент убедительные доказательства необходимости каких-то из элементов отсутствуют, то это может быть связано с недостатком сведений о них, обусловленным несовершенством современных методов анализа.

Патологические процессы в живых организмах, вызванные избытком или недостатком некоторых химических элементов, были известны за несколько тысяч лет до открытия самих элементов.

Одно из первых, давно известных заболеваний — эндемический зоб — упоминалось в китайской литературе еще 4000 лет тому назад. Для лечения этой болезни в древности рекомендовались морские водоросли. Только в середине XIX в. было установлено, что недостаток йода в почвах, водах, продуктах может вызывать у позвоночных болезнь щитовидной железы. Поэтому и было эффективным лечение болезни морскими водорослями, богатыми йодом, и другими йодистыми препаратами.

Внимание к Se проявилось в 1931 г., когда было установлено, что при отравлении селеном у животных развивается хромота. Спустя 25 лет было выявлено, что недостаток селена ведет к мышечной дистрофии животных. В настоящее время признано, что Se обеспечивает сопротивляемость живых организмов токсичному действию химических веществ, обладает сильным антиканцерогенным действием.

Что касается мышьяка, издавна считалось, что это яд. Но в 1975 г. была признана его необходимость для обеспечения нормальных функций живых организмов, в том числе репродуктивных. Ядовитыми являются продукты биотрансформации As, такие как триметиларсин, диметиларсин, которые могут образовывать плесневые грибы в анаэробных условиях.

Влияние на здоровье человека загрязняющих веществ почв имеет свои особенности. Химические вещества почвы, как правило, поступают в организм человека не непосредственно, а по пищевым цепочкам: почва—вода—человек, почва—вода—растения—человек, почва—растения—животное—человек. Это обстоятельство должно быть принято во внимание при оценке опасности химических веществ почв для человека.

Органические поллютанты проявляют канцерогенную активность. Особенно опасны метилзамещенные ПАУ, бенз(а)пирен, бенз(а)флуорантен. Канцерогенный эффект их зависит от путей поступления в организм. На примере бенз(а)пирена показано, что при пероральном воздействии у подопытных животных опухоли развивались в желудке, при интратекальном — в легких. Бластомогенный эффект, как правило, не зависел от пути поступления токсиканта.

Рассмотрим на примере кобальта связь между содержанием элемента в окружающей среде и состоянием живых организмов.

Кобальт — существенный и незаменимый компонент витамина В12, молекула которого содержит одни атом Co. Простетическая группа витамина В12 имеет гемоподобную структуру, причем Co находится в ней в трехвалентном состоянии. Окончательно вопрос о механизме действия кобальта на живые организмы не решен. Биологическая активность Co, по-видимому, связана с его способностью образовывать комплексы с ферментами за счет образования связей с сульфгидрильными и N-гистидиновыми группами. Простетическая группа в живых организмах играет важную роль как метилирующий агент и как кофермент мутаз, катализирующих перенос водорода. Элемент незаменим для дыхания клеток, производства энергии и при окислительных реакциях. Недостаток Co, например у жвачных животных, вызывает болезнь, называемую в разных странах «береговой болезнью», «кустарниковой болезнью», чаще — «изнурением». Излечение или предотвращение болезни у животных достигалось введением солей кобальта.

Повышенные дозы Co опасны для живых организмов. Токсичность Со изучалась, летальные дозы его отрабатывались на различных подопытных животных при различных способах воздействии на них солями элемента. Наиболее важные клинические и физические симптомы острого отравления кобальтом — это нарушение дыхания, сердечной деятельности, заторможенность, внутриглазное кровоизлияние, паралич задних конечностей. Эти симптомы наблюдались при ингаляции Co — содержащих аэрозольных частиц кроликам, хомячкам, крысам. Введение солей Co с кормами свиньям вызывало у них анорексию, нарушение координации, тремор конечностей. У крыс, собак, мышей, кроликов они вызвали гипергликемию, нарушение функции поджелудочной железы, гипертрофию легких, селезенки и сердца. У морских свинок, крыс, кроликов, собак, которым давали корм с повышенным содержанием Co, отмечена кардиомиопатия. Подкожные инъекции растворов солей Co вызывали образование раковых опухолей у подопытных мышей. В опытах с введением Co солей крысам отмечено токсическое действие их на размножение и развитие, в опытах с бактериями и дрожжами отмечены мутагенные эффекты.

В организме человека кобальт — обязательный элемент. В среднем в организме человека содержится около 1 мг кобальта, почти половина — в мускулах. Близко к этой величине и среднее суточное потребление человеком этого элемента. Главные источники витамина В12 для человека — мясо, фрукты, овощи, зерновые. При нарушении оптимального уровня содержания Co в организме человека наблюдаются патологические изменения.

Выявлено токсическое действие солей кобальта на здоровье людей, в частности, потреблявших продукты, к которым, в соответствии с технологией, добавляли соли кобальта. Эффект проявлялся в патологии сердца. Получены подтверждения того, что Co — это металл с выраженным аллергическим потенциалом. Влияние воздействия его солей на кожу человека вызывает вспышку дерматита. Установлены последствия производственного контакта людей с кобальтом. К таковым относятся производство вольфрама и цементированных карбидов. Выявлены многочисленные заболевания работников этих отраслей легочными болезнями, среди них и бронхиальная астма — «кобальтовое легкое» и альвеолит, а также одышка, потеря обоняния, желудочно-кишечная патология.

На основании представлений о механизмах формирования биологической активности кобальта, которую связывают с его способностью к образованию комплексов с ферментами, разрабатываются противоядия для людей при отравлении их кобальтом. В частности, получен положительный эффект от применения конкурирующего комплексообразования. В качестве лечебных средств при заболеваниях, вызванных избытком кобальта, предложены препараты, содержащие ЭДТА, ДТПА, N-ацетил-L-цистин, которые должны обеспечить распад комплексных соединений кобальта, вызывающих токсический эффект (Проблемы загрязнения окружающей среды. 1993).

Результаты теоретических и экспериментальных исследований проблем токсикологии и влияния химических веществ на живые организмы в конце XX — начале XXI в. только подтвердили гениальную мысль, которую еще в первой половине XVI в. сформулировал великий немецкий медик и естествоиспытатель Парацельс, сказав: «Что является и что не является ядом? Все вещества являются ядами, и не бывает веществ без ядовитости. Только доза определяет ядовитость».